The Mathematical Theory of Black Holes with Matter
黑洞与物质的数学理论
基本信息
- 批准号:2128386
- 负责人:
- 金额:$ 11.96万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
General Relativity is the fundamental physical theory of gravity and has a role of primary importance in our understanding of the universe. The key equation of General Relativity is due to Einstein, and black holes are its most surprising solutions. Black holes occupy a central stage in our understanding of gravity and tremendous progress in their research has been accomplished in the past decades. They are expected to form as a result of gravitational collapse and are surrounded by matter with which they interact. They are expected to radiate energy away in the form of gravitational waves (as detected by LIGO) and settle to a stationary state. Most mathematical models used in the study of such evolution of black holes do not consider any matter or energy field present in the spacetime: more precisely, they only assume the presence of the gravitational field. This is called the case of the vacuum Einstein equation. Even though the vacuum Einstein equation already presents many difficulties from the mathematical point of view, they hardly represent a complete picture about the physics involved. In order to obtain a realistic model for astrophysical black holes, matter fields should be added to the Einstein equation to model the surrounding of the black holes. This research is aimed at the study of black hole stability both for the vacuum Einstein equation and for the coupled equations with electromagnetic radiation. The plan of this research is to create a rigorous and systematic approach to understand the interaction of gravitational radiation with other matter fields present in astrophysical objects. We plan to consider the interaction between gravitation and electromagnetic fields, governed by the Maxwell equations, and develop a rigorous and clear understanding of their interactions. Our approach is based on the Teukolsky formalism. The Einstein-Maxwell equation has many features in common with the vacuum Einstein equation, but also presents new substantial difficulties related to the coupling of the gravitational and electromagnetic interactions. One of the difficulties is to identify gauge-invariant quantities which transport electromagnetic and gravitational radiation and derive the partial differential equations they satisfy. We then plan to be able to generalize the main ideas in dealing with those interactions to other matter systems, like Einstein-Vlasov, null dust or complex scalar, which are of fundamental importance in astrophysical systems. In general, in the case of the Einstein equation coupled with matter fields, we expect to obtain coupled hyperbolic PDEs with sources which interact one with another.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
一般相对论是重力的基本物理理论,在我们对宇宙的理解中起主要重要性。一般相对性的关键方程是由于爱因斯坦引起的,黑洞是其最令人惊讶的解决方案。在过去的几十年中,黑洞占据了我们对重力和研究的巨大进步的中心阶段。预计它们会由于重力崩溃而形成,并被与之相互作用的物质所包围。预计它们将以重力波的形式辐射能量(由Ligo检测到),并定居至固定状态。黑洞演变的研究中使用的大多数数学模型都不认为时空中存在任何问题或能量场:更确切地说,它们仅假定引力场的存在。这称为真空爱因斯坦方程的情况。即使真空爱因斯坦方程从数学的角度出现了许多困难,但它们几乎不代表有关所涉及的物理学的完整图片。为了获得天体物理黑洞的现实模型,应将物质场添加到爱因斯坦方程中,以模拟黑洞的周围。这项研究旨在研究真空爱因斯坦方程和具有电磁辐射的耦合方程的黑洞稳定性。 这项研究的计划是创建一种严格而系统的方法,以了解引力辐射与天体物理物体中存在的其他物质领域的相互作用。我们计划考虑重力与电磁场之间的相互作用,受麦克斯韦方程约束,并对它们的相互作用产生严格而清晰的了解。我们的方法基于Teukolsky形式主义。 Einstein-Maxwell方程在真空爱因斯坦方程中具有许多共同的特征,但也带来了与引力和电磁相互作用偶联有关的新的实质困难。 困难之一是确定传输电磁和重力辐射的量规不变量,并得出所满足的部分微分方程。然后,我们计划能够将这些相互作用与其他物质系统(例如Einstein-Vlasov,Null Dust或复杂标量)等相互作用进行概括,这在天体物理系统中至关重要。通常,如果爱因斯坦方程与物质领域相结合,我们希望获得与源头耦合的双曲线PDE,这些PDE与另一个相互作用的PDE相互作用。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点和更广泛影响的审查标准来通过评估来支持的。
项目成果
期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Second-order perturbations of Kerr black holes: Formalism and reconstruction of the first-order metric
- DOI:10.1103/physrevd.103.104017
- 发表时间:2021-05-18
- 期刊:
- 影响因子:5
- 作者:Loutrel, Nicholas;Ripley, Justin L.;Pretorius, Frans
- 通讯作者:Pretorius, Frans
Stable black holes: in vacuum and beyond
- DOI:10.1090/bull/1781
- 发表时间:2022-09
- 期刊:
- 影响因子:1.3
- 作者:Elena Giorgi
- 通讯作者:Elena Giorgi
Electromagnetic-gravitational perturbations of Kerr–Newman spacetime: The Teukolsky and Regge–Wheeler equations
- DOI:10.1142/s0219891622500011
- 发表时间:2020-02
- 期刊:
- 影响因子:0.7
- 作者:Elena Giorgi
- 通讯作者:Elena Giorgi
Numerical computation of second-order vacuum perturbations of Kerr black holes
- DOI:10.1103/physrevd.103.104018
- 发表时间:2020-10
- 期刊:
- 影响因子:5
- 作者:Justin L. Ripley;N. Loutrel;Elena Giorgi;F. Pretorius
- 通讯作者:Justin L. Ripley;N. Loutrel;Elena Giorgi;F. Pretorius
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Elena Giorgi其他文献
Corrigendum to “Stable black holes: In vacuum and beyond”
“稳定黑洞:真空及真空之外”的勘误表
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:1.3
- 作者:
Elena Giorgi - 通讯作者:
Elena Giorgi
Boundedness and Decay for the Teukolsky System of Spin ±2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\pm \,2$$\end
- DOI:
10.1007/s00023-020-00923-3 - 发表时间:
2018-11 - 期刊:
- 影响因子:0
- 作者:
Elena Giorgi - 通讯作者:
Elena Giorgi
The Linear Stability of Reissner–Nordström Spacetime: The Full Subextremal Range |Q|<M\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \b
- DOI:
10.1007/s00220-020-03893-z - 发表时间:
2019-10 - 期刊:
- 影响因子:2.4
- 作者:
Elena Giorgi - 通讯作者:
Elena Giorgi
The Linear Stability of Reissner–Nordström Spacetime for Small Charge
- DOI:
10.1007/s40818-020-00082-y - 发表时间:
2019-04 - 期刊:
- 影响因子:2.8
- 作者:
Elena Giorgi - 通讯作者:
Elena Giorgi
The Teukolsky equations in Kerr-Newman spacetime
- DOI:
- 发表时间:
2020-02 - 期刊:
- 影响因子:0
- 作者:
Elena Giorgi - 通讯作者:
Elena Giorgi
Elena Giorgi的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Elena Giorgi', 18)}}的其他基金
CAREER: Gravitational and Electromagnetic Waves on Black Holes
职业:黑洞上的引力波和电磁波
- 批准号:
2336118 - 财政年份:2024
- 资助金额:
$ 11.96万 - 项目类别:
Continuing Grant
Physical-Space Estimates on Black Hole Perturbations
黑洞扰动的物理空间估计
- 批准号:
2306143 - 财政年份:2023
- 资助金额:
$ 11.96万 - 项目类别:
Standard Grant
The Mathematical Theory of Black Holes with Matter
黑洞与物质的数学理论
- 批准号:
2006741 - 财政年份:2020
- 资助金额:
$ 11.96万 - 项目类别:
Standard Grant
相似国自然基金
基于热电力协同调控的食管穿越式适形热物理治疗理论与方法研究
- 批准号:52306105
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
代数K理论、代数数论及其在编码密码中的应用
- 批准号:12371035
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
面向六自由度交互的沉浸式视频感知编码理论与方法研究
- 批准号:62371081
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
一类双色散非局部波动方程初值问题的理论研究
- 批准号:12301272
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
物理-数据混合驱动的复杂曲面多模态视觉检测理论与方法
- 批准号:52375516
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
A mathematical approach to black hole perturbation theory
黑洞微扰理论的数学方法
- 批准号:
22K03641 - 财政年份:2022
- 资助金额:
$ 11.96万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
On the Mathematical Theory of Black Holes
论黑洞的数学理论
- 批准号:
2201031 - 财政年份:2022
- 资助金额:
$ 11.96万 - 项目类别:
Standard Grant
Kukua - an innovative, fun, and engaging, early childhood STEM platform as a promotion intervention program for age 4-8 years old AA girls
Kukua - 一个创新、有趣、引人入胜的幼儿 STEM 平台,作为 4-8 岁 AA 女孩的促进干预计划
- 批准号:
10255019 - 财政年份:2021
- 资助金额:
$ 11.96万 - 项目类别:
Representing human difference: Testing how beliefs about social categories form in development
代表人类差异:测试关于社会类别的信念如何在发展中形成
- 批准号:
10703480 - 财政年份:2021
- 资助金额:
$ 11.96万 - 项目类别:
The Mathematical Theory of Black Holes with Matter
黑洞与物质的数学理论
- 批准号:
2006741 - 财政年份:2020
- 资助金额:
$ 11.96万 - 项目类别:
Standard Grant