FW-HTF-R:Collaborative Research: Partnering Workers with Interactive Robot Assistants to Usher Transformation in Future Construction Work
FW-HTF-R:协作研究:工人与交互式机器人助手合作,引领未来建筑工作的变革
基本信息
- 批准号:2128398
- 负责人:
- 金额:$ 21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-01 至 2024-12-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Construction is a $10 trillion industry that employs about 180 million workers worldwide. However, the future of construction work is at crossroads. First, productivity in construction work has been stagnant relative to other industries (e.g., manufacturing), and the industry has historically been slow to adopt innovations that affect efficiency. Second, it has been difficult to offset the aging and retiring workforce with younger and more diverse workers, causing the workforce supply to fall short of rising demand. This is mainly because construction work tends to be physically strenuous leading to occupational hazards that often force workers to retire early. Robotization has been suggested as a potential solution to these problems. However, the unstructured nature of construction work presents several technical, social and economic impediments that hinder the direct adoption and integration of such innovations by the construction industry. For construction workers, robotic technology can only be transformative if it allows them to channel their passion for the work while avoiding the chronic pain and health outcomes associated with its physical demands.This project investigates if construction work can be conceived as a human-robot partnership, where human workers play the critical role of planning the work, and training and supervising robotic assistants to adapt to presented workspace conditions and perform useful work. The project team is integrating advances in interactive task learning, mixed reality, and reinforcement learning to enable construction workers to naturally collaborate with robot assistants through direct physical interaction and virtual supervision and training. For such a symbiotic human-robot partnership to benefit construction workers and result in widespread deployment, workers need to be equipped with new skills. The project team is exploring new educational and professional development programs to support worker aspirations for upskilling and lifelong learning, and to open avenues for people of diverse abilities to be productive members of the construction workforce. Tight-knit partnerships with industry collaborators will inform the project activities and provide access to construction work sites and training facilities for testing and evaluation.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
建筑是一个耗资100万亿美元的行业,在全球范围内拥有约1.8亿工人。但是,建筑工作的未来是在十字路口。首先,相对于其他行业(例如制造业),建筑工作中的生产力一直停滞不前,并且该行业历史上采用影响效率的创新速度很慢。其次,很难与年轻和更多样化的工人相抵消老龄化和退休的劳动力,从而导致劳动力供应的需求不断增长。这主要是因为建筑工作往往会在身体上很艰难,导致职业危害,通常迫使工人早日退休。已经建议机器化作为解决这些问题的潜在解决方案。但是,建筑工作的非结构化本质呈现出几种技术,社会和经济障碍,这阻碍了建筑行业对这种创新的直接采用和整合。对于建筑工人而言,机器人技术只有在允许他们传达对工作的热情的同时避免与其身体需求相关的慢性疼痛和健康成果时才能进行变革。该项目是否可以将建筑工作视为人类机器人的伙伴关系,在该伙伴关系中,人类工人在计划工作,培训和监督机器人助手的关键作用中可以适应机器人的助手,以适应工作范围的工作和有用的工作。项目团队正在整合交互式任务学习,混合现实和强化学习中的进步,以使建筑工人通过直接的身体互动,虚拟的监督和培训自然与机器人助手合作。为了使这种共生的人类机器人合作伙伴关系受益于建筑工人并导致广泛的部署,需要配备新技能。该项目团队正在探索新的教育和专业发展计划,以支持工人的愿望,以实现高技能和终身学习,并为具有多种能力的人们提供建筑劳动力成员的能力开放。与行业合作者建立紧密联系的合作伙伴关系将为项目活动提供信息,并提供建筑工作站点和培训设施进行测试和评估。该奖项反映了NSF的法定任务,并被认为是通过基金会的知识分子的智力优点和更广泛的影响来通过评估来获得支持的。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Olusola Adesope其他文献
Olusola Adesope的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Olusola Adesope', 18)}}的其他基金
Collaborative Research: Meta-Analysis of the Effects of Refutation Materials for Promoting Conceptual Change in STEM
合作研究:反驳材料对促进 STEM 概念转变影响的荟萃分析
- 批准号:
1920672 - 财政年份:2019
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Collaborative Research: Exploring Brownfield Programming Assignments in Undergraduate Computing Education
协作研究:探索本科计算机教育中的棕地编程作业
- 批准号:
1915196 - 财政年份:2019
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Collaborative Research: An Instrument and Adoption Framework for Student Cognitive and Social Engagement with a Course
协作研究:学生认知和社会参与课程的工具和采用框架
- 批准号:
1544103 - 财政年份:2016
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
相似国自然基金
转HTFα对脊髓继发性损伤和微循环重建的影响
- 批准号:39970755
- 批准年份:1999
- 资助金额:13.0 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research [FW-HTF-RL]: Enhancing the Future of Teacher Practice via AI-enabled Formative Feedback for Job-Embedded Learning
协作研究 [FW-HTF-RL]:通过人工智能支持的工作嵌入学习形成性反馈增强教师实践的未来
- 批准号:
2326170 - 财政年份:2023
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Collaborative Research: FW-HTF-RM: Human-in-the-Lead Construction Robotics: Future-Proofing Framing Craft Workers in Industrialized Construction
合作研究:FW-HTF-RM:人类主导的建筑机器人:工业化建筑中面向未来的框架工艺工人
- 批准号:
2326160 - 财政年份:2023
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Collaborative Research: FW-HTF-RL: Trapeze: Responsible AI-assisted Talent Acquisition for HR Specialists
合作研究:FW-HTF-RL:Trapeze:负责任的人工智能辅助人力资源专家人才获取
- 批准号:
2326193 - 财政年份:2023
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
Collaborative Research: FW-HTF-RM: Artificial Intelligence Technology for Future Music Performers
合作研究:FW-HTF-RM:未来音乐表演者的人工智能技术
- 批准号:
2326198 - 财政年份:2023
- 资助金额:
$ 21万 - 项目类别:
Standard Grant
FW-HTF-RL/Collaborative Research: Future of Digital Facility Management (Future of DFM)
FW-HTF-RL/协作研究:数字设施管理的未来(DFM 的未来)
- 批准号:
2326407 - 财政年份:2023
- 资助金额:
$ 21万 - 项目类别:
Standard Grant