Collaborative Research: CNS Core: Small: Dynamic Pricing and Procurement for Distributed Networked Platforms
合作研究:CNS 核心:小型:分布式网络平台的动态定价和采购
基本信息
- 批准号:2102963
- 负责人:
- 金额:$ 20万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Many industries today feature some kind of networked platform, where consumers may purchase resources from a network of providers. For example, mobile edge users can form a network and rent their compute resources to consumers. In order for these emerging businesses to survive and grow, however, they should ensure that their distributed resources are priced properly and made available in the proper amounts to users. Otherwise, some providers may find themselves overloaded with users and unable to serve their demands. This collaborative project between Carnegie Mellon University (CMU) and the University of Massachusetts Amherst (UMass) seeks to design foundational pricing, procurement, and scheduling policies that ensure that users are distributed well across the platform and apply these policies to the emerging application of edge computing.Optimal dynamic pricing schemes can signal to users which providers have resources available, while conversely dynamic procurement allows networked providers to adjust their resources to user demands. Scheduling schemes complement pricing and procurement solutions by leveraging time flexibility in user demands to best allocate resources to users. While several works have separately considered optimal pricing and scheduling policies for networked platforms, this project is the first to develop foundational theories for the joint formulation of dynamic pricing/procurement and scheduling under uncertainty. This project will develop pricing, procurement, and scheduling algorithms with theoretical performance guarantees; combine these solutions with learning-based approaches to manage tradeoffs between robustness and performance; and validate these solutions in edge computing scenarios.Successful development of the proposed pricing, procurement, and scheduling solutions will make the business of edge computing more profitable and competitive. Providers may gain insights into how to best price their resources, while users may gain flexibility that helps lower the cost of fulfilling their demands. Further, the theoretical tools developed will make foundational contributions to online optimization and learning research. In addition to these technical broader impacts, the project will support several education and outreach activities. These will include undergraduate research projects, integration of the research findings into courses at the participating institutions, and presentations and interactive sessions at workshops aimed at broadening participation in computing.The results of this project will be maintained in an online repository to be hosted by either UMass or CMU. These are expected to include technical reports of the research findings, software prototypes of the algorithms designed, and datasets and experimental results collected for the edge computing experiments. The material in the repository will remain available for at least two years after the project concludes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
当今许多行业都具有某种网络平台,消费者可以在其中从提供商网络购买资源。例如,移动边缘用户可以组建网络并将其计算资源出租给消费者。然而,为了让这些新兴企业生存和发展,他们应该确保其分布式资源的定价合理,并以适当的数量提供给用户。否则,一些提供商可能会发现自己的用户过多,无法满足他们的需求。卡内基梅隆大学 (CMU) 和马萨诸塞大学阿默斯特分校 (UMass) 之间的合作项目旨在设计基础定价、采购和调度政策,确保用户在整个平台上良好分布,并将这些政策应用于边缘计算的新兴应用。最佳动态定价方案可以向用户发出哪些提供商拥有可用资源的信号,而相反,动态采购允许网络提供商根据用户需求调整其资源。调度方案通过利用用户需求的时间灵活性来为用户最佳地分配资源,从而补充定价和采购解决方案。虽然有几项工作分别考虑了网络平台的最优定价和调度策略,但该项目是第一个开发不确定性下联合制定动态定价/采购和调度的基础理论的项目。该项目将开发具有理论性能保证的定价、采购和调度算法;将这些解决方案与基于学习的方法相结合,以管理鲁棒性和性能之间的权衡;并在边缘计算场景中验证这些解决方案。所提出的定价、采购和调度解决方案的成功开发将使边缘计算业务更具盈利能力和竞争力。提供商可以深入了解如何对其资源进行最佳定价,而用户可以获得有助于降低满足其需求的成本的灵活性。此外,开发的理论工具将为在线优化和学习研究做出基础性贡献。除了这些更广泛的技术影响外,该项目还将支持多项教育和外展活动。这些将包括本科生研究项目、将研究成果整合到参与机构的课程中,以及旨在扩大计算参与的研讨会上的演示和互动会议。该项目的结果将保存在由以下机构主办的在线存储库中:麻省大学或卡耐基梅隆大学。预计这些内容包括研究结果的技术报告、设计的算法的软件原型以及为边缘计算实验收集的数据集和实验结果。项目结束后,存储库中的材料将保留至少两年。该奖项反映了 NSF 的法定使命,并通过使用基金会的知识价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Applied Online Algorithms with Heterogeneous Predictors
具有异构预测器的应用在线算法
- DOI:
- 发表时间:2023-07
- 期刊:
- 影响因子:0
- 作者:Jessica Maghakian; Russell Lee
- 通讯作者:Russell Lee
Cooperative Stochastic Bandits with Asynchronous Agents and Constrained Feedback
具有异步代理和约束反馈的合作随机强盗
- DOI:
- 发表时间:2021-12
- 期刊:
- 影响因子:0
- 作者:Lin Yang; Yu
- 通讯作者:Yu
The War of the Efficiencies: Understanding the Tension between Carbon and Energy Optimization
效率之战:了解碳与能源优化之间的紧张关系
- DOI:10.1145/3604930.3605709
- 发表时间:2023-07
- 期刊:
- 影响因子:0
- 作者:Hanafy, Walid A.;Bostandoost, Roozbeh;Bashir, Noman;Irwin, David;Hajiesmaili, Mohammad;Shenoy, Prashant
- 通讯作者:Shenoy, Prashant
Hierarchical Learning Algorithms for Multi-scale Expert Problems
多尺度专家问题的分层学习算法
- DOI:10.1145/3530900
- 发表时间:2022-05
- 期刊:
- 影响因子:0
- 作者:Yang, Lin;Chen, Yu;Hajiesmaili, Mohammad H.;Herbster, Mark;Towsley, Don
- 通讯作者:Towsley, Don
Contextual combinatorial bandits with probabilistically triggered arms
具有概率触发臂的上下文组合老虎机
- DOI:
- 发表时间:2023-07
- 期刊:
- 影响因子:0
- 作者:Xutong Liu; Jinhang Zuo
- 通讯作者:Jinhang Zuo
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mohammadhassan Hajiesmaili其他文献
Mohammadhassan Hajiesmaili的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mohammadhassan Hajiesmaili', 18)}}的其他基金
Collaborative Research: CPS Medium: Enabling DER Integration via Redesign of Information Flows
合作研究:CPS 媒介:通过重新设计信息流实现 DER 集成
- 批准号:
2136199 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
CAREER: A Robust and Data-driven Design for Carbon-intelligent Distributed Systems
职业生涯:碳智能分布式系统的稳健且数据驱动的设计
- 批准号:
2045641 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Continuing Grant
Collaborative Research: CNS Core: Medium: Dynamic Data-driven Systems - Theory and Applications
合作研究:CNS 核心:媒介:动态数据驱动系统 - 理论与应用
- 批准号:
2106299 - 财政年份:2021
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
CNS: Core: Small: Energy and Load Management in Data Centers: Online Optimization and Learning
CNS:核心:小型:数据中心的能源和负载管理:在线优化和学习
- 批准号:
1908298 - 财政年份:2019
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
相似国自然基金
LncMOB3A-2编码多肽在肠外致病性大肠杆菌入侵中枢神经系统中的作用机制研究
- 批准号:32302954
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
S100A9作为万古霉素儿童中枢神经系统抗感染个体化治疗预测因子的机制研究和量效分析
- 批准号:82304631
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
失重效应影响中枢神经系统药物脑空间分布及药动学的机制和调控研究
- 批准号:82373939
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
染色质重塑因子CHD3调控中枢神经系统少突胶质细胞发育的机制研究
- 批准号:82301950
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于人体镜像中枢神经系统和信任度的假肢互适应机制研究
- 批准号:62363006
- 批准年份:2023
- 资助金额:31 万元
- 项目类别:地区科学基金项目
相似海外基金
Collaborative Research: CNS Core: Small: Accelerating Serverless Cloud Network Performance
协作研究:CNS 核心:小型:加速无服务器云网络性能
- 批准号:
2229454 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: CISE-MSI: RCBP-RF: CNS: ESD4CDaT - Efficient System Design for Cancer Detection and Treatment
合作研究:CISE-MSI:RCBP-RF:CNS:ESD4CDaT - 癌症检测和治疗的高效系统设计
- 批准号:
2318573 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Center of Biomedical Research Excellence in CNS Metabolism
中枢神经系统代谢生物医学卓越研究中心
- 批准号:
10557542 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Collaborative Research: CNS Core: Small: A Compilation System for Mapping Deep Learning Models to Tensorized Instructions (DELITE)
合作研究:CNS Core:Small:将深度学习模型映射到张量化指令的编译系统(DELITE)
- 批准号:
2230945 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Small: Efficient Ways to Enlarge Practical DNA Storage Capacity by Integrating Bio-Computer Technologies
合作研究:中枢神经系统核心:小型:通过集成生物计算机技术扩大实用 DNA 存储容量的有效方法
- 批准号:
2343863 - 财政年份:2023
- 资助金额:
$ 20万 - 项目类别:
Standard Grant