Collaborative Research: Far-from-equilibrium surfaces of high entropy alloys: interplay between frictional sliding and corrosion damage

合作研究:高熵合金的非平衡表面:摩擦滑动与腐蚀损伤之间的相互作用

基本信息

项目摘要

Non-Technical SummaryMulti-principal-element alloys, also known as high entropy alloys (HEAs), are an emerging class of metallic materials which often consist of five or more alloying elements with similar concentration. HEAs have generated considerable interest as potential structural materials for use under harsh conditions due to their superior mechanical properties and chemical stability compared to traditional alloys. Despite all of the promise that HEAs hold, little is known about their surface structure and properties upon simultaneous mechanical impacts and chemical reactions under harsh environments. This collaborative research between Virginia Tech and the University of Alabama aims to develop a scientific understanding of the structure and formation mechanism of the surface of HEAs after simultaneous wear and rusting (i.e. tribocorrosion) in chloride-containing aqueous solution (e.g. seawater). By combining advanced surface characterization tools and multi-scale computer simulations, the link between surface defects, deformation, and tribocorrosion susceptibility of HEAs will be established. This project will lead to the design of metals with high tribocorrosion resistance for critical applications which require high wear and rust resistance under harsh conditions. The highly cross-disciplinary research activities will provide graduate students with diverse training in materials science, tribology, corrosion, and computational materials science, as well as the collaborative teamwork experience. It will also positively impact several education and outreach initiatives, especially the involvement of underrepresented groups via research opportunities at Virginia Tech and the University of Alabama.Technical SummaryOur current understanding of the tribocorrosion mechanisms of HEAs is mainly challenged by a lack of understanding of the selective dissolution/oxidation of principal elements, as well as the new deformation physics at/below the surface. The synergy between mechanical and chemical attack drastically alters the materials’ surface condition and corrosion susceptibility, especially for Cr-containing HEAs that rely on a thin yet protective surface oxide layer (i.e. passive layer) for corrosion protection in air and water. This project will combine advanced surface characterization and multi-scale simulations to reveal how frictional sliding-induced depassivation leads to the formation of far-from-equilibrium microstructure and composition at the surface, and the influence of the surface electrochemistry and mechancis that act synergistically on the overall repassivation kinetics and tribocorrosion rate. Specifically, the PIs will (1) determine how alloy concentration and grain size affect wear, corrosion, and their synergy, (2) elucidate the chemistry, composition, and defect characteristics of the tribocorroded surface structure and its formation mechanism, (3) understand wear-induced defect generation and microstructure evolution using atomistic simulations, and (4) develop an experimentally validated, predictive model for tribocorrosion using multiphysics simulations that incorporate rate-limiting corrosion and repassivation steps. The integrated experimental and computational approach has great potential to reduce the materials creation and deployment cycle to fabricate tribocorrosion-resistant alloys over a larger design space than traditionally known. Research opportunities and mentorship programs will be created at Virginia Tech and the University of Alabama for undergraduate students, especially for women (with both PIs serving as role models) and under-represented minorities. In addition, the proposed outreach activities will positively impact local K-12 students and the broad internet audience to promote their interest and enhance their knowledge in STEM fields.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术摘要多主元素合金,也称为高熵合金 (HEA),是一类新兴的金属材料,通常由五种或更多浓度相似的合金元素组成,HEA 作为潜在的结构材料引起了极大的兴趣。与传统合金相比,由于其优异的机械性能和化学稳定性,可在恶劣条件下使用尽管 HEA 具有许多前景,但人们对其在恶劣环境下同时发生机械冲击和反应时的表面结构和性能知之甚少。弗吉尼亚理工大学和阿拉巴马大学之间的研究旨在通过结合先进的表面技术,对含氯水溶液(例如海水)中同时磨损和生锈(即摩擦腐蚀)后的 HEA 表面结构和形成机制进行科学理解。通过表征工具和多尺度计算机模拟,将建立 HEA 的表面缺陷、变形和摩擦腐蚀敏感性之间的联系,该项目将导致金属的设计。高度跨学科的研究活动将为研究生提供材料科学、摩擦学、腐蚀和计算材料科学以及协作团队合作方面的多样化培训。它还将对多项教育和推广活动产生积极影响,特别是通过弗吉尼亚理工大学和阿拉巴马大学的研究机会让代表性不足的群体参与进来。技术摘要我们目前对 HEA 摩擦腐蚀机制的理解主要受到缺乏了解的挑战。主要元素的选择性溶解/氧化,以及表面/表面以下的新变形物理,机械和化学侵蚀之间的协同作用极大地改变了材料的表面状况和腐蚀敏感性,特别是对于依赖于腐蚀的含铬 HEA。用于空气和水中腐蚀防护的薄而保护性的表面氧化层(即钝化层)该项目将结合先进的表面表征和多尺度模拟,以揭示摩擦滑动引起的去钝化如何导致。表面远离平衡微观结构和成分的形成,以及表面电化学和机制对整体再钝化动力学和摩擦腐蚀速率的协同作用的影响,具体而言,PI 将 (1) 决定合金浓度和晶粒尺寸。影响磨损、腐蚀及其协同作用,(2) 阐明摩擦腐蚀表面结构的化学、成分和缺陷特征及其形成机制,(3) 理解(4) 使用多物理场模拟开发经过实验验证的摩擦腐蚀预测模型,其中包含限速腐蚀和再钝化步骤。集成的实验和计算方法具有减少磨损的巨大潜力。弗吉尼亚理工大学和阿拉巴马大学将为本科生,特别是女性学生,提供比传统已知的更大设计空间的材料创造和部署周期,以制造耐摩擦腐蚀合金。 (以两位 PI 为榜样)和代表性不足的少数群体 此外,拟议的外展活动将对当地 K-12 学生和广大互联网受众产生积极影响,以提高他们对 STEM 领域的兴趣并增强他们的知识。该奖项反映了这一点。通过使用基金会的智力价值和更广泛的影响审查标准进行评估,NSF 的法定使命被认为值得支持。

项目成果

期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Computational design of non-equiatomic CoCrFeNi alloys towards optimized mechanical and surface properties
非等原子 CoCrFeNi 合金的计算设计,以优化机械和表面性能
  • DOI:
    10.1557/s43578-022-00695-y
  • 发表时间:
    2022-08-29
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Zhengyu Zhang;Yi Yao;Liping Liu;Tianyou Mou;H. Xin;Lin Li;W. Cai
  • 通讯作者:
    W. Cai
Understanding Tribocorrosion of Aluminum at the Crystal Level
了解铝在晶体水平上的摩擦腐蚀
  • DOI:
    10.1016/j.actamat.2022.118639
  • 发表时间:
    2023-02
  • 期刊:
  • 影响因子:
    9.4
  • 作者:
    Wang, Kaiwen;Zhang, Zhengyu;Dandu, Raja Shekar;Cai, Wenjun
  • 通讯作者:
    Cai, Wenjun
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wenjun Cai其他文献

How CEO passion promotes firm Innovation: The mediating role of Top Management Team (TMT) creativity and the moderating role of organizational culture
CEO激情如何促进企业创新:高层管理团队(TMT)创造力的中介作用和组织文化的调节作用
  • DOI:
    10.1007/s12144-021-02030-w
  • 发表时间:
    2021-07-01
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Wenjun Cai;Jibao Gu;Jianlin Wu
  • 通讯作者:
    Jianlin Wu
A new linear and conservative finite difference scheme for the Gross–Pitaevskii equation with angular momentum rotation
具有角动量旋转的 Gross-Pitaevskii 方程的新线性保守有限差分格式
  • DOI:
    10.21914/anziamj.v61i0.13426
  • 发表时间:
    2019-04-01
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    Jin;Wenjun Cai;Chaolong Jiang;Yushun Wang
  • 通讯作者:
    Yushun Wang
Variational discretizations for the generalized Rosenau-type equations
广义 Rosenau 型方程的变分离散化
  • DOI:
    10.1016/j.amc.2015.09.060
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    4
  • 作者:
    Wenjun Cai;Yajuan Sun;Yushun Wang
  • 通讯作者:
    Yushun Wang
A general symplectic integrator for canonical Hamiltonian systems
正则哈密顿系统的通用辛积分器
  • DOI:
    10.1117/12.2285785
  • 发表时间:
    2019-12-02
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yonghui Bo;Wenjun Cai;Yushun Wang
  • 通讯作者:
    Yushun Wang
A class of arbitrarily high-order energy-preserving method for nonlinear Klein–Gordon–Schrödinger equations
非线性Klein-Gordon-Schrödinger方程的一类任意高阶能量守恒方法
  • DOI:
    10.1016/j.cpc.2024.109159
  • 发表时间:
    2024-06-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Xuelong Gu;Yuezheng Gong;Wenjun Cai;Yushun Wang
  • 通讯作者:
    Yushun Wang

Wenjun Cai的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wenjun Cai', 18)}}的其他基金

Optimizing Wear and Corrosion Resistance of Superlattice Coatings through Atomic-Scale Design
通过原子尺度设计优化超晶格涂层的耐磨性和耐腐蚀性
  • 批准号:
    1855651
  • 财政年份:
    2018
  • 资助金额:
    $ 42.05万
  • 项目类别:
    Standard Grant
CAREER: Effects of Alloy Concentration on the Tribocorrosion Resistance of Al-TM Supersaturated Solid Solutions
事业:合金浓度对 Al-TM 过饱和固溶体耐摩擦腐蚀性能的影响
  • 批准号:
    1856196
  • 财政年份:
    2018
  • 资助金额:
    $ 42.05万
  • 项目类别:
    Continuing Grant
Optimizing Wear and Corrosion Resistance of Superlattice Coatings through Atomic-Scale Design
通过原子尺度设计优化超晶格涂层的耐磨性和耐腐蚀性
  • 批准号:
    1663098
  • 财政年份:
    2017
  • 资助金额:
    $ 42.05万
  • 项目类别:
    Standard Grant
CAREER: Effects of Alloy Concentration on the Tribocorrosion Resistance of Al-TM Supersaturated Solid Solutions
事业:合金浓度对 Al-TM 过饱和固溶体耐摩擦腐蚀性能的影响
  • 批准号:
    1455108
  • 财政年份:
    2015
  • 资助金额:
    $ 42.05万
  • 项目类别:
    Continuing Grant

相似国自然基金

先进运行模式中稳态远轴内部输运垒的调控机理研究
  • 批准号:
    12375233
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
组装因子Hlip在叶绿素f蓝藻远红光型PSII重塑中的功能研究
  • 批准号:
    32370398
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于空间高频波的远场深亚波长光场调控研究
  • 批准号:
    12374306
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
基于锐边衍射的远场纳米光学尺研究
  • 批准号:
    12304358
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于钻孔雷达的油气储层远井裂缝可探测性研究
  • 批准号:
    42374178
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Far-from-equilibrium surfaces of high entropy alloys: interplay between frictional sliding and corrosion damage
合作研究:高熵合金的非平衡表面:摩擦滑动与腐蚀损伤之间的相互作用
  • 批准号:
    2333517
  • 财政年份:
    2023
  • 资助金额:
    $ 42.05万
  • 项目类别:
    Standard Grant
Collaborative Research: Far-from-equilibrium surfaces of high entropy alloys: interplay between frictional sliding and corrosion damage
合作研究:高熵合金的非平衡表面:摩擦滑动与腐蚀损伤之间的相互作用
  • 批准号:
    2104656
  • 财政年份:
    2021
  • 资助金额:
    $ 42.05万
  • 项目类别:
    Standard Grant
Discovery Science Collaborative for CKDu
CKDu 发现科学合作
  • 批准号:
    10300877
  • 财政年份:
    2021
  • 资助金额:
    $ 42.05万
  • 项目类别:
Discovery Science Collaborative for CKDu
CKDu 发现科学合作
  • 批准号:
    10471943
  • 财政年份:
    2021
  • 资助金额:
    $ 42.05万
  • 项目类别:
Discovery Science Collaborative for CKDu
CKDu 发现科学合作
  • 批准号:
    10471943
  • 财政年份:
    2021
  • 资助金额:
    $ 42.05万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了