Collaborative Research: Acoustic Holography Enabled Additive Manufacturing of High-resolution Multifunctional Composites

合作研究:声全息技术支持高分辨率多功能复合材料的增材制造

基本信息

  • 批准号:
    2104295
  • 负责人:
  • 金额:
    $ 20万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-01 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

Recent swift advances in additive manufacturing have demonstrated its great potential in tailoring the local and global properties of produced structures by including micro- or nano-particles into polymer matrix composites. However, current approaches have been limited by the challenge in precision spatial controls of embedded particles, which usually have diverse material properties, sizes, and shapes, making particle manipulation in a viscous polymer fluid difficult. This collaborative research award will conduct fundamental research to transform an additive manufacturing technology that leverages digital light processing for photopolymerization printing and acoustic holography to accurately “tweeze” micro/nano-particles in a polymer resin. The research will greatly impact basic science fields in acoustic tweezers, materials processing, metamaterials, and biomaterials, etc. Moreover, the studied acoustic holography additive manufacturing technology will advance many engineering applications through enabling novel metamaterials containing, e.g., lattice-like patterns for ultrasonic signal processing devices, cellulose-based reinforced architectures for customized repair of aircraft composite structures, or patterned micro-vessels for personalized biomimetic bone tissue regeneration. Through education and outreach activities, this project will also broaden the participation of underrepresented minorities, improve STEM education, and increase public engagements with science and technologies. The multidisciplinary nature of this project will provide unique learning and training opportunities for graduate and undergraduate students. The overall objective of this research is to understand an acoustic holography enabled additive manufacturing mechanism to fabricate multifunctional composites that contain high-resolution, versatile patterns of diverse micro/nano-particles such as cellulose nanofibrils, carbon-based particles, and cells, etc. First, an acoustic holography-based particle patterning mechanism will be established to construct and reconfigure versatile particle patterns in viscous resins by studying a frequency multiplexing-based method for dynamically controlling multifrequency acoustic fields. Acoustic wave interactions with particles in viscous resins will be uncovered through particle image velocimetry and acoustic field scanning, and a theoretical model for rapid prediction of the particle patterning process will be developed and validated. Next, the knowhow of the acoustic holography-based particle patterning will be fused with the digital light processing-based photopolymerization to create a versatile, high-resolution apparatus for scalable additive manufacturing. Then, the apparatus will be utilized to develop and study novel multifunctional composites such as topological metamaterial composites containing periodic lattice-like patterns of micro-particles. Both theoretical and experimental methodologies will be utilized to further discover the effects of different periodic particle patterns on different properties of additively manufactured composites, including anisotropic elasticity, acoustic band gaps, Dirac cones, and topological states, etc.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
增材制造最近的快速进展已经证明了其通过将微米或纳米颗粒纳入聚合物基复合材料来定制所生产结构的局部和整体特性的巨大潜力,然而,当前的方法受到嵌入的精确空间控制的挑战的限制。颗粒通常具有不同的材料特性、尺寸和形状,这使得粘性聚合物流体中的颗粒操纵变得困难。该合作研究奖将进行基础研究,以转变利用数字光处理进行光聚合打印和声全息术的增材制造技术。准确该研究将对声镊、材料加工、超材料和生物材料等基础科学领域产生重大影响。此外,所研究的声全息增材制造技术将通过多种方式推进许多工程应用。实现新颖的超材料,例如用于超声波信号处理设备的晶格状图案、用于飞机复合结构定制修复的基于纤维素的增强架构,或用于个性化的图案化微血管通过教育和推广活动,该项目还将扩大代表性不足的少数群体的参与,改善 STEM 教育,并增加公众对科学和技术的参与。该项目的多学科性质将为毕业生提供独特的学习和培训机会。这项研究的总体目标是了解声全息增材制造机制,以制造包含高分辨率、多功能图案的多种微米/纳米颗粒(例如纤维素纳米纤维)的多功能复合材料。首先,将通过研究基于频率复用的动态控制多频声波的方法,建立基于声全息的颗粒图案化机制,以在粘性树脂中构建和重新配置通用颗粒图案。将通过粒子图像测速和声场扫描揭示与粘性树脂中粒子的相互作用,并将开发和验证用于快速预测粒子图案化过程的理论模型。基于声学全息术的粒子图案将与基于数字光处理的光聚合相融合,以创建用于可扩展增材制造的多功能高分辨率设备,然后,该设备将用于开发和研究新型多功能复合材料,例如拓扑超材料复合材料。包含周期性晶格状微粒图案的理论和实验方法将用于进一步发现不同周期性粒子图案对增材制造复合材料不同性能(包括各向异性)的影响。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,认为值得支持。

项目成果

期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Intelligent nanoscope for rapid nanomaterial identification and classification
用于纳米材料快速识别和分类的智能纳米镜
  • DOI:
    10.1039/d2lc00206j
  • 发表时间:
    2022-06
  • 期刊:
  • 影响因子:
    6.1
  • 作者:
    Jin, Geonsoo;Hong, Seongwoo;Rich, Joseph;Xia, Jianping;Kim, Kyeri;You, Lingchong;Zhao, Chenglong;Huang, Tony Jun
  • 通讯作者:
    Huang, Tony Jun
Advances in Microsphere-based Super-resolution Imaging
基于微球的超分辨率成像的进展
  • DOI:
    10.1109/rbme.2024.3355875
  • 发表时间:
    2024-01
  • 期刊:
  • 影响因子:
    17.6
  • 作者:
    Upreti, Neil;Jin, Geonsoo;Rich, Joseph;Zhong, Ruoyu;Mai, John;Zhao, Chenglong;Huang, Tony Jun
  • 通讯作者:
    Huang, Tony Jun
Acoustofluidics for simultaneous nanoparticle-based drug loading and exosome encapsulation
用于同时纳米粒子载药和外泌体封装的声流体学
  • DOI:
    10.1038/s41378-022-00374-2
  • 发表时间:
    2022-04
  • 期刊:
  • 影响因子:
    7.9
  • 作者:
    Wang, Zeyu;Rich, Joseph;Hao, Nanjing;Gu, Yuyang;Chen, Chuyi;Yang, Shujie;Zhang, Peiran;Huang, Tony Jun
  • 通讯作者:
    Huang, Tony Jun
Aerosol jet printing of surface acoustic wave microfluidic devices
表面声波微流控装置的气溶胶喷射打印
  • DOI:
    10.1038/s41378-023-00606-z
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    7.9
  • 作者:
    Rich, Joseph;Cole, Brian;Li, Teng;Lu, Brandon;Fu, Hanyu;Smith, Brittany N.;Xia, Jianping;Yang, Shujie;Zhong, Ruoyu;Doherty, James L.;Kaneko, Kanji;Suzuki, Hiroaki;Tian, Zhenhua;Franklin, Aaron D.;Huang, Tony Jun
  • 通讯作者:
    Huang, Tony Jun
High-yield and rapid isolation of extracellular vesicles by flocculation via orbital acoustic trapping: FLOAT
通过轨道声捕获絮凝高产快速分离细胞外囊泡:FLOAT
  • DOI:
    10.1038/s41378-023-00648-3
  • 发表时间:
    2024-02-04
  • 期刊:
  • 影响因子:
    7.9
  • 作者:
    Joseph Rufo;Peiran Zhang;Zeyu Wang;Yuyang Gu;Kaichun Yang;Joseph Rich;Chuyi Chen;Ruoyu Zhong;Ke Jin;Ye He;Jianping Xia;Ke Li;Jiarong Wu;Yingshi Ouyang;Y. Sadovsky;Luke P. Lee;T. Huang
  • 通讯作者:
    T. Huang
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tony Jun Huang其他文献

Lab on a Chip Miniaturisation for chemistry , physics , biology , materials science and bioengineering
化学、物理、生物学、材料科学和生物工程的芯片实验室小型化
  • DOI:
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Po;N. Nama;Zhangming Mao;Joseph Rufo;Yuchao Chen;Yuliang Xie;Tony Jun Huang
  • 通讯作者:
    Tony Jun Huang
Hybrid Dielectric-loaded Nanoridge Plasmonic Waveguide for Low- Loss Light Transmission at the Subwavelength Scale
用于亚波长尺度低损耗光传输的混合电介质负载纳米脊等离子体波导
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Jinju Sun;Jianying Gong;Xiasheng Guo;Tony Jun Huang
  • 通讯作者:
    Tony Jun Huang
Numerical study of acoustophoretic motion of particles in a PDMS microchannel driven by surface acoustic waves
  • DOI:
    10.1039/c5lc00231a
  • 发表时间:
    2015-05
  • 期刊:
  • 影响因子:
    6.1
  • 作者:
    Nitesh Nama;Rune Barnkob;Zhangming Mao;Christian J. Kähler;Francesco Costanzo;Tony Jun Huang
  • 通讯作者:
    Tony Jun Huang
Surface acoustic waves enable rotational manipulation ofCaenorhabditis elegans
  • DOI:
    10.1039/c8lc01012a
  • 发表时间:
    2019-02
  • 期刊:
  • 影响因子:
    6.1
  • 作者:
    Jinxin Zhang;Shujie Yang;Chuyi Chen;Jessica H. Hartman;Po-Hsun Huang;Lin Wang;Zhenhua Tian;Peiran Zhang;David Faulkenberry;Joel N. Meyer;Tony Jun Huang
  • 通讯作者:
    Tony Jun Huang
Correction: High-throughput cell focusing and separationviaacoustofluidic tweezers
  • DOI:
    10.1039/d0lc90091e
  • 发表时间:
    2020-08
  • 期刊:
  • 影响因子:
    6.1
  • 作者:
    Mengxi Wu;Kejie Chen;Shujie Yang;Zeyu Wang;Po-Hsun Huang;John Mai;Zeng-Yao Li;Tony Jun Huang
  • 通讯作者:
    Tony Jun Huang

Tony Jun Huang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tony Jun Huang', 18)}}的其他基金

Collaborative Research: High Resolution Acoustic Manipulation of Single Cells with Integrated MEMS based Phased Arrays
合作研究:利用集成 MEMS 相控阵对单细胞进行高分辨率声学操控
  • 批准号:
    1807601
  • 财政年份:
    2018
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Student Poster Symposium at ASME Society-Wide Micro and Nano Technology Forum, Houston, Texas, November 9-15, 2012
ASME 全社会微纳米技术论坛学生海报研讨会,德克萨斯州休斯顿,2012 年 11 月 9 日至 15 日
  • 批准号:
    1248221
  • 财政年份:
    2012
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
EAGER: Exploring High-Resolution, Energy-Efficient, Full-Color Electronic Paper Displays (E-PADs) Driven by Rotary Molecular Motors
EAGER:探索由旋转分子电机驱动的高分辨率、节能、全彩电子纸显示器 (E-PAD)
  • 批准号:
    1102206
  • 财政年份:
    2011
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Student Poster Symposium at ASME Society-Wide Micro and Nano Technology Forum, Denver, Colorado, November 11, 2011 - November 17, 2011
ASME全社会微纳米技术论坛学生海报研讨会,科罗拉多州丹佛,2011年11月11日 - 2011年11月17日
  • 批准号:
    1160568
  • 财政年份:
    2011
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Opto-Fluidic Hybrid System for Miniaturized Flow Cytometry
用于小型流式细胞术的光流控混合系统
  • 批准号:
    0824183
  • 财政年份:
    2008
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Ultra-Small, All-Optical Plasmonic Switches Based on Light-Driven Molecular Shuttles
基于光驱动分子梭的超小型全光等离子体开关
  • 批准号:
    0801922
  • 财政年份:
    2008
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant

相似国自然基金

非厄米声学晶格系统中的拓扑物理研究
  • 批准号:
    12374418
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
轨道模式依赖的声学拓扑态及其应用研究
  • 批准号:
    12304492
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
声学拓扑安德森绝缘体拓扑特性研究
  • 批准号:
    12304486
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
声学信号调控语音反馈脑网络在腭裂代偿语音康复中的机制研究
  • 批准号:
    82302874
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于声学超材料的跨介质角动量调控及应用研究
  • 批准号:
    12304493
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research:CIF:Small: Acoustic-Optic Vision - Combining Ultrasonic Sonars with Visible Sensors for Robust Machine Perception
合作研究:CIF:Small:声光视觉 - 将超声波声纳与可见传感器相结合,实现强大的机器感知
  • 批准号:
    2326904
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: Meshed GNSS-Acoustic Array Design for Lower-Cost Dense Observation Fields
合作研究:用于低成本密集观测场的网状 GNSS 声学阵列设计
  • 批准号:
    2321298
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
Collaborative Research:CIF:Small:Acoustic-Optic Vision - Combining Ultrasonic Sonars with Visible Sensors for Robust Machine Perception
合作研究:CIF:Small:声光视觉 - 将超声波声纳与可见传感器相结合,实现强大的机器感知
  • 批准号:
    2326905
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: Can Irregular Structural Patterns Beat Perfect Lattices? Biomimicry for Optimal Acoustic Absorption
合作研究:不规则结构模式能否击败完美晶格?
  • 批准号:
    2341951
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Standard Grant
Collaborative Research: Meshed GNSS-Acoustic Array Design for Lower-Cost Dense Observation Fields
合作研究:用于低成本密集观测场的网状 GNSS 声学阵列设计
  • 批准号:
    2321297
  • 财政年份:
    2024
  • 资助金额:
    $ 20万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了