SBIR Phase I: A highly-scalable, rapid, in-season approach to tune a nitrogen model for accurate prediction of a corn crop’s remaining nitrogen need
SBIR 第一阶段:一种高度可扩展、快速的季节性方法,用于调整氮模型,以准确预测玉米作物的剩余氮需求
基本信息
- 批准号:2127096
- 负责人:
- 金额:$ 25.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-15 至 2023-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The broader impact/commercial potential of this Small Business Innovation Research (SBIR) Phase I project is the development of a novel artificial intelligence technology that enables U.S. corn farmers to optimize nitrogen fertilizer applications based on field characteristics, rainfall and growing conditions. More efficient use of nitrogen fertilizer will reduce the carbon footprint of U.S. agriculture because more than 10% of the energy consumed in the U.S. agricultural sector goes toward the production of nitrogen fertilizer for corn. Because nitrogen fertilizer is a critical driver of both input costs and yield, this technology will improve the profitability of U.S. farmers by reducing input costs and maximizing corn yields. This project may enable corn production that creates less nitrogen fertilizer pollution, which threatens human health, degrades aquatic ecosystems and emits greenhouse gases that contribute to climate change. A key social element of this project is a teaching module for middle-school science students that will blend content on soil science, agronomy, and crop management with the challenges faced by U.S. corn farmers to follow best management practices.This Small Business Innovation Research (SBIR) Phase I project seeks to demonstrate the technical feasibility of using machine learning to evaluate the amount of yellowness on the lowest corn leaves visible in images taken from low-cost cameras mounted on ground robots. Characteristic yellowness on corn leaves is a strong indicator of stress caused by insufficient nitrogen, a key nutrient. A prototype neural network model will be iteratively improved, in part by dramatically increasing the available training imagery over the course of this Phase I project. Imagery will be collected on field trials set up across several Mid-Western states. Preliminary data suggest that the extent of characteristic yellowness is an indicator of accumulated nitrogen stress that is observable only under the canopy and not via airborne sensors. A commercially available nitrogen model will be used to estimate accumulated nitrogen stress across small plots created by manipulating the amount of added nitrogen fertilizer when corn is about 1-2 feet high. Tuning will occur by adjusting key model parameters through simulation until the differences are minimized between observed and modeled accumulated nitrogen stress across a field’s small plots. Parallel software development will improve prototype codes running simulations of a leading nitrogen model, enabling rapid model tuning.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
小型企业创新研究(SBIR)I阶段项目的更广泛的影响/委托是开发一种讲述技术,使美国的角落能够基于现场特征的情况来降低氮的氮肥应用。美国消耗的10%的足迹用于玉米的氮肥生产。离子会造成人类健康的硝基污染,从而降低了水生生态系统,并散发出温室的污染,以使气候变化成为一种关键的社交元素美国玉米农民面临遵循最佳管理实践所面临的挑战。这项小型企业创新创新研究(SBIR)I阶段项目旨在证明使用低 - 最低的玉米es可见的Yellowness的技术性成本摄像机在阶段I项目中使用的机器人不足。当玉米高约1-2英尺时,通过操纵量的传感器是通过观察到的,是在田野上的氮气差异。模型调整。该奖项反映了NSF'SF'Stutory任务,并使用基金会的知识分子优点和更广泛的影响审查标准进行了评估。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kent Cavender-Bares其他文献
Kent Cavender-Bares的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
热带河口特有鱼类尖鳍鲤早期生活史不同阶段的栖息地利用变化及驱动机制
- 批准号:32360917
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
PPP项目跨阶段监管机制研究
- 批准号:72301115
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
抗生素对不同生长阶段蓝藻光合电子传递和生理代谢的影响及分子机制研究
- 批准号:52300219
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于现代监测的湘西惹迷洞MIS2阶段石笋碳同位素和微量元素记录重建研究
- 批准号:42371164
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
高层钢结构建模-优化-深化的跨阶段智能设计方法
- 批准号:52308142
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
SBIR Phase II: Long Stroke Micromachined Arrayed Cell Electrostatic Actuators for Highly Integrated Micro-Positioning
SBIR 第二阶段:用于高度集成微定位的长冲程微机械阵列单元静电执行器
- 批准号:
2151499 - 财政年份:2022
- 资助金额:
$ 25.6万 - 项目类别:
Cooperative Agreement
SBIR Phase I: Low latency and ultra high quality video streaming platform for highly immersive virtual reality (VR) experiences
SBIR 第一阶段:低延迟和超高质量视频流平台,提供高度沉浸式虚拟现实 (VR) 体验
- 批准号:
2151286 - 财政年份:2022
- 资助金额:
$ 25.6万 - 项目类别:
Standard Grant
SBIR Phase II: Development of a novel, highly efficient Descemet's Membrane Endothelial Keratoplasty preparation device expands the donor pool
SBIR II 期:开发新型高效后弹力层内皮角膜移植术准备装置,扩大供体库
- 批准号:
2212687 - 财政年份:2022
- 资助金额:
$ 25.6万 - 项目类别:
Cooperative Agreement
SBIR Phase I: Electrochemically-Mediated Highly Selective SO2 Scrubbing
SBIR 第一阶段:电化学介导的高选择性 SO2 洗涤
- 批准号:
2035954 - 财政年份:2021
- 资助金额:
$ 25.6万 - 项目类别:
Standard Grant
SBIR Phase I: Highly resource-efficient protein engineering using machine learning
SBIR 第一阶段:利用机器学习实现高度资源效率的蛋白质工程
- 批准号:
2051603 - 财政年份:2021
- 资助金额:
$ 25.6万 - 项目类别:
Standard Grant