CC* Integration-Large: Bringing Code to Data: A Collaborative Approach to Democratizing Internet Data Science
CC* Integration-Large:将代码带入数据:互联网数据科学民主化的协作方法
基本信息
- 批准号:2126281
- 负责人:
- 金额:$ 98.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2024-09-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Successful application of machine learning (ML) for networking problems depends on the availability of high-quality labeled data from real-world networks. Equally critical is the ability to share these datasets, respecting the data owners' privacy concerns. Unfortunately, short of sharing the data via today’s commonly-applied data-to-code paradigm, researchers lack a systematic framework for working with or benefiting from data collected and curated by third parties. Consequently, Internet Data Science as practiced today is ill-suited for applications such as (i) high-quality data labeling, (ii) rigorous evaluation of research artifacts such as learning models, and (iii) independent validation/reproducibility of reported research findings.This collaborative project brings together researchers from University of Oregon, University of California-Santa Barbara, and NIKSUN, Inc., and will investigate an innovative collaborative data labeling and knowledge sharing framework in three thrusts. First, the project will investigate a novel code-to-data approach that entails sharing of programmatic representations of operators' domain knowledge to identify events of interest in the data. Second, the project will design and develop a new learning framework to enable the pursuit of Internet Data Science as a full-fledged collaborative effort. Third, the project will illustrate the capabilities of the proposed framework in the context of collaborative efforts between two participating universities (UO and UCSB) and demonstrate its ability to scale to any number of participants.The resulting framework will serve as a driving force for advancing collaborative efforts in the emerging area of Internet Data Science. In addition to identifying some of the fundamental changes to how ML ought to be used in networking, the research findings will benefit both industry and academia and will ensure that tomorrow's workforce has the proper training to fully exploit the application of ML for network-specific problems. Also, the outcomes will catalyze the development of a roadmap for the adoption of Internet Data Science efforts by operators and the deployment of ensuing research artifacts in real-world production networks.This project will maintain the following webpage: https://onrg.gitlab.io/projects/emerge.html.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
成功应用机器学习(ML)在网络问题上的应用取决于来自现实世界网络的高质量标记数据的可用性。同样至关重要的是共享这些数据集的能力,尊重数据所有者的隐私问题。不幸的是,缺少通过当今常用的数据对代码范式共享数据,研究人员缺乏与第三方收集和策划的数据合作或受益的系统框架。 Consequently, Internet Data Science as practiced today is ill-suited for applications such as (i) high-quality data labeling, (ii) rigorous evaluation of research artifacts such as learning models, and (iii) independent validation/reproducibility of reported research findings.This collaborative project brings together researchers from University of Oregon, University of California-Santa Barbara, and NIKSUN, Inc., and will investigate an innovative collaborative data标记和知识共享框架分为三个推力。首先,该项目将调查一种新颖的代码到数据方法,该方法将组织共享操作员域知识的程序化表示形式,以识别数据中感兴趣的事件。其次,该项目将设计和开发一个新的学习框架,以使互联网数据科学成为全面的协作工作。第三,该项目将在两所参与大学(UO和UCSB)之间的合作努力下说明拟议框架的能力,并证明其扩展到任何数量的参与者的能力。结果框架将成为促进互联网数据科学新兴领域的协作努力的驱动力。除了确定有关如何在网络中使用ML的一些根本变化外,研究结果还将受益于行业和学术界,并确保明天的劳动力对适当的培训进行了适当的培训,以充分利用ML在特定网络特定问题中的应用。 Also, the outcomes will catalyze the development of a roadmap for the adoption of Internet Data Science efforts by operators and the deployment of ensuring research artifacts in real-world production networks.This project will maintain the following webpage: https://onrg.gitlab.io/projects/emerge.html.This award reflects NSF's statutory mission and has been deemed precious of support through evaluation利用基金会的知识分子和更广泛的影响审查标准。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
PINOT: Programmable Infrastructure for Networking
PINOT:可编程网络基础设施
- DOI:10.1145/3606464.3606485
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Beltiukov, Roman;Chandrasekaran, Sanjay;Gupta, Arpit;Willinger, Walter
- 通讯作者:Willinger, Walter
DynATOS+: A Network Telemetry System for Dynamic Traffic and Query Workloads
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:Chris Misa;Ramakrishnan Durairajan;R. Rejaie
- 通讯作者:Chris Misa;Ramakrishnan Durairajan;R. Rejaie
Estimating WebRTC Video QoE Metrics Without Using Application Headers
- DOI:10.1145/3618257.3624828
- 发表时间:2023-06
- 期刊:
- 影响因子:0
- 作者:Taveesh Sharma;Tarun Mangla;Arpit Gupta;Junchen Jiang;N. Feamster
- 通讯作者:Taveesh Sharma;Tarun Mangla;Arpit Gupta;Junchen Jiang;N. Feamster
Dynamic Scheduling of Approximate Telemetry Queries
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Chris Misa;Walt O'Connor;Ramakrishnan Durairajan;R. Rejaie;Walter Willinger
- 通讯作者:Chris Misa;Walt O'Connor;Ramakrishnan Durairajan;R. Rejaie;Walter Willinger
A NetAI Manifesto (Part I): Less Explorimentation, More Science
NetAI 宣言(第一部分):更少的探索,更多的科学
- DOI:10.1145/3626570.3626609
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Willinger, Walter;Gupta, Arpit;Jacobs, Arthur S.;Beltiukov, Roman;Ferreira, Ronaldo A.;Granville, Lisandro
- 通讯作者:Granville, Lisandro
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ramakrishnan Durairajan其他文献
A Techno-Economic Framework for Broadband Deployment in Underserved Areas
服务欠缺地区宽带部署的技术经济框架
- DOI:
10.1145/2940157.2940159 - 发表时间:
2016 - 期刊:
- 影响因子:4.5
- 作者:
Ramakrishnan Durairajan;P. Barford - 通讯作者:
P. Barford
On the Resilience of Internet Infrastructures in Pacific Northwest to Earthquakes
西北太平洋地区互联网基础设施的抗震能力
- DOI:
10.1007/978-3-030-72582-2_15 - 发表时间:
2021 - 期刊:
- 影响因子:0
- 作者:
Juno Mayer;V. Sahakian;E. Hooft;D. Toomey;Ramakrishnan Durairajan - 通讯作者:
Ramakrishnan Durairajan
Internet atlas: a geographic database of the internet
互联网地图集:互联网地理数据库
- DOI:
10.1145/2491159.2491170 - 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Ramakrishnan Durairajan;Subhadip Ghosh;Xin Tang;P. Barford;Brian Eriksson - 通讯作者:
Brian Eriksson
InterTubes: A Study of the US Long-haul Fiber-optic Infrastructure
InterTubes:美国长途光纤基础设施研究
- DOI:
10.1145/2785956.2787499 - 发表时间:
2015 - 期刊:
- 影响因子:0
- 作者:
Ramakrishnan Durairajan;P. Barford;J. Sommers;W. Willinger - 通讯作者:
W. Willinger
Automatic metadata generation for active measurement
自动生成元数据以进行主动测量
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
J. Sommers;Ramakrishnan Durairajan;P. Barford - 通讯作者:
P. Barford
Ramakrishnan Durairajan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ramakrishnan Durairajan', 18)}}的其他基金
Collaborative Research: SaTC: CORE: Medium: ONSET: Optics- enabled Network Defenses for Extreme Terabit DDoS Attacks
协作研究:SaTC:核心:中:ONSET:针对极端太比特 DDoS 攻击的光学网络防御
- 批准号:
2132651 - 财政年份:2022
- 资助金额:
$ 98.85万 - 项目类别:
Standard Grant
CAREER: Argus: A Measurement-informed Learning Approach to Managing Multi-cloud Networks
职业:Argus:管理多云网络的基于测量的学习方法
- 批准号:
2145813 - 财政年份:2022
- 资助金额:
$ 98.85万 - 项目类别:
Continuing Grant
CRII: NeTS: Denoising Internet Delay Measurements using Weak Supervision
CRII:NeTS:使用弱监督对互联网延迟测量进行去噪
- 批准号:
1850297 - 财政年份:2019
- 资助金额:
$ 98.85万 - 项目类别:
Standard Grant
相似国自然基金
大跨度空间绳系系统的姿轨一体化动力学与分数阶分布式控制
- 批准号:62303139
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
国内统一大市场背景下市场一体化对资源配置效率的影响研究
- 批准号:72303108
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
新型高强高阻尼镁合金大环件的形性一体化制备基础研究
- 批准号:
- 批准年份:2020
- 资助金额:260 万元
- 项目类别:联合基金项目
面向大机动的无人机飞行控制与边界保护一体化方法研究
- 批准号:61903163
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
基于“品、质、性、效、用”一体化评价模式的大果飞蛾藤代用丁公藤可行性研究
- 批准号:81973419
- 批准年份:2019
- 资助金额:55 万元
- 项目类别:面上项目
相似海外基金
CC*Integration-Large: Programmable Network Testbed for 400 Gbps Science DMZ
CC*Integration-Large:400 Gbps Science DMZ 的可编程网络测试台
- 批准号:
2346605 - 财政年份:2024
- 资助金额:
$ 98.85万 - 项目类别:
Standard Grant
CC* Integration-Large: Husker-Net: Open Nebraska End-to-End Wireless Edge Networks
CC* 大型集成:Husker-Net:开放内布拉斯加州端到端无线边缘网络
- 批准号:
2321699 - 财政年份:2023
- 资助金额:
$ 98.85万 - 项目类别:
Standard Grant
CC* Integration-Large: An Extensible Internet for Science Applications and Beyond
CC* Integration-Large:用于科学应用及其他应用的可扩展互联网
- 批准号:
2201489 - 财政年份:2022
- 资助金额:
$ 98.85万 - 项目类别:
Standard Grant
CC* Integration-Large: Prototyping a Secure Distributed Storage Infrastructure for Accelerating Big Science
CC* Integration-Large:构建安全分布式存储基础设施原型以加速大科学发展
- 批准号:
2126148 - 财政年份:2021
- 资助金额:
$ 98.85万 - 项目类别:
Standard Grant
CC* Integration-Large: In-Network Distributed Infrastructure for Advanced Network Applications
CC* 大型集成:用于高级网络应用的网内分布式基础设施
- 批准号:
2126266 - 财政年份:2021
- 资助金额:
$ 98.85万 - 项目类别:
Standard Grant