Collaborative Research: SCH: Multimodal Algorithms for Motor Imitation Assessment in Children with Autism
合作研究:SCH:自闭症儿童运动模仿评估的多模式算法
基本信息
- 批准号:2124277
- 负责人:
- 金额:$ 65.91万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2025-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Approximately 1 in 54 children in the US is diagnosed with autism spectrum disorder (ASD). Given its high prevalence, there is a need for an automatic and scalable method to inform diagnosis and behavioral therapies. While prior work on finding early-emerging and reliable quantitative biomarkers of ASD has focused on non-motor features, abundant research evidence has revealed patterns of impaired motor imitation in a wide range of children with ASD, making motor imitation deficits a promising avenue to find a phenotypic biomarker. However, traditional imitation assessment methods often rely on expert-based observation, which is costly, time-consuming and error-prone, and lacks objectivity and scalability. Recent advances in computer vision and machine learning make artificial intelligence a promising technology to design an objective, reproducible and highly-scalable multimodal system functioning not only in well-equipped clinical setups but also at home for assessing imitation performance in children with ASD. However, critical challenges such as the design of specific imitation tasks for ASD assessment, the collection and labeling of multimodal data for training machine learning algorithms, and the development of novel fine-grained representations human movements and metrics for comparing such movements need to be addressed to test the validity, scalability and reproducibility of automatic motor imitation assessment algorithms to inform ASD diagnosis.The overall goal of this project is to design, develop and test an objective, reproducible and highly-scalable multimodal system to observe children performing a brief video game-like motor imitation task, quantitatively assess their motor imitation performance, and investigate its validity as a phenotypic biomarker for autism. Accomplishing this goal will require an interdisciplinary approach which combines expertise in autism, child development, computer vision and machine learning. Specifically, this project will: (1) design motor imitation tasks that are relevant for ASD assessment, (2) design, test and validate a scalable and flexible system to collect and label multimodal data of children imitating a sequence of movements; (3) design a novel fine-grained representation of human movements that can be learned efficiently and is suitable for comparing the children's movements to the movements they need to imitate; (4) develop novel computer vision and metric learning algorithms for learning and comparing multimodal representations of human movements, and (5) use such metrics to generate candidate imitations scores that can be used as potential quantitative biomarkers for ASD. The motor imitation assessment methods to be developed in this project could be used in a wide variety of applications beyond assessing children with ASD, such as providing imitation performance scores for video-based rehabilitation therapy, surgical skill assessment, athletic activities and other movement-based instructional activities.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在美国,大约有54名儿童被诊断出患有自闭症谱系障碍(ASD)。鉴于其高患病率,需要一种自动且可扩展的方法来告知诊断和行为疗法。尽管ASD的早期出现和可靠的量化生物标志物的先前工作重点是非运动特征,但大量的研究证据揭示了在广泛的ASD儿童中,运动模仿受损的模式,使运动模仿缺陷成为一个有前途的大道,可以找到一个表型生物标志物。但是,传统的模仿评估方法通常依赖于基于专家的观察,这是昂贵的,耗时且容易出错的观察,并且缺乏客观性和可扩展性。计算机视觉和机器学习的最新进展使人工智能成为设计一种有前途的技术,它不仅在设备齐全的临床设置中运作,而且还可以评估ASD儿童的模仿性能。 However, critical challenges such as the design of specific imitation tasks for ASD assessment, the collection and labeling of multimodal data for training machine learning algorithms, and the development of novel fine-grained representations human movements and metrics for comparing such movements need to be addressed to test the validity, scalability and reproducibility of automatic motor imitation assessment algorithms to inform ASD diagnosis.The overall goal of this project is to design, develop and test an客观,可重现且高度可观的多模式系统,可观察儿童执行短暂的视频游戏式仿真任务,定量评估其运动模仿性能,并研究其作为自闭症表型生物标志物的有效性。实现这一目标将需要一种跨学科的方法,该方法结合了自闭症,儿童发展,计算机视觉和机器学习方面的专业知识。具体而言,该项目将:(1)设计与ASD评估相关的电动机模仿任务,(2)设计,测试和验证可扩展且灵活的系统,以收集和标记儿童的多模式数据,模仿了一系列运动; (3)设计一种可以有效学习的人类运动的新型细粒度表示,适合将孩子的运动与他们所需的模仿运动进行比较; (4)开发用于学习和比较人类运动的多模式表示的新型计算机视觉和度量学习算法,并且(5)使用此类指标来生成可用作ASD的潜在定量生物标志物的候选模仿得分。除了评估ASD评估儿童之外,还可以在该项目中开发的运动模仿评估方法,例如为基于视频的康复治疗,手术技能评估,运动活动和其他基于运动的教学活动提供模仿性能得分。该奖项反映了NSF的法定任务,并通过评估范围来反映出范围的Infactia intiftia intiftia intiftia intiftial intiftia intifial intiftial intift and Foundlial and Foundliat and foothial的基础。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Automated and scalable Computerized Assessment of Motor Imitation (CAMI) in children with Autism Spectrum Disorder using a single 2D camera: A pilot study
- DOI:10.1016/j.rasd.2021.101840
- 发表时间:2021-08-14
- 期刊:
- 影响因子:2.5
- 作者:Lidstone, Daniel E.;Rochowiak, Rebecca;Mostofsky, Stewart H.
- 通讯作者:Mostofsky, Stewart H.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Rene Vidal其他文献
Rene Vidal的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Rene Vidal', 18)}}的其他基金
Collaborative Research: Transferable, Hierarchical, Expressive, Optimal, Robust, Interpretable Networks
协作研究:可转移、分层、富有表现力、最优、稳健、可解释的网络
- 批准号:
2031985 - 财政年份:2020
- 资助金额:
$ 65.91万 - 项目类别:
Continuing Grant
HDR TRIPODS: Institute for the Foundations of Graph and Deep Learning
HDR TRIPODS:图形和深度学习基础研究所
- 批准号:
1934979 - 财政年份:2019
- 资助金额:
$ 65.91万 - 项目类别:
Continuing Grant
III: Medium: Non-Convex Methods for Discovering High-Dimensional Structures in Big and Corrupted Data
III:媒介:在大数据和损坏数据中发现高维结构的非凸方法
- 批准号:
1704458 - 财政年份:2017
- 资助金额:
$ 65.91万 - 项目类别:
Standard Grant
RI: Small: An Optimization Framework for Understanding Deep Networks
RI:小型:理解深度网络的优化框架
- 批准号:
1618485 - 财政年份:2016
- 资助金额:
$ 65.91万 - 项目类别:
Standard Grant
CIF: Small: Collaborative Research: Sparse and Low Rank Methods for Imbalanced and Heterogeneous Data
CIF:小型:协作研究:针对不平衡和异构数据的稀疏和低秩方法
- 批准号:
1618637 - 财政年份:2016
- 资助金额:
$ 65.91万 - 项目类别:
Standard Grant
RI: Small: Object Detection, Pose Estimation, and Semantic Segmentation Using 3D Wireframe Models
RI:小:使用 3D 线框模型进行物体检测、姿势估计和语义分割
- 批准号:
1527340 - 财政年份:2015
- 资助金额:
$ 65.91万 - 项目类别:
Continuing Grant
BIGDATA: F: DKA: Learning a Union of Subspaces from Big and Corrupted Data
BIGDATA:F:DKA:从大数据和损坏数据中学习子空间并集
- 批准号:
1447822 - 财政年份:2014
- 资助金额:
$ 65.91万 - 项目类别:
Standard Grant
Geometry and Statistics on Spaces of Dynamical Systems for Pattern Recognition in High-Dimensional Time Series
用于高维时间序列模式识别的动力系统空间的几何和统计
- 批准号:
1335035 - 财政年份:2013
- 资助金额:
$ 65.91万 - 项目类别:
Standard Grant
RI: Small: Structured Sparse Conditional Random Fields Models for Joint Categorization and Segmentation of Objects.
RI:小型:用于对象联合分类和分割的结构化稀疏条件随机场模型。
- 批准号:
1218709 - 财政年份:2012
- 资助金额:
$ 65.91万 - 项目类别:
Standard Grant
CDI-Type I: Collaborative Research: A Bio-Inspired Approach to Recognition of Human Movements and Movement Styles
CDI-I 型:协作研究:识别人类运动和运动风格的仿生方法
- 批准号:
0941463 - 财政年份:2010
- 资助金额:
$ 65.91万 - 项目类别:
Standard Grant
相似国自然基金
支持二维毫米波波束扫描的微波/毫米波高集成度天线研究
- 批准号:62371263
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
腙的Heck/脱氮气重排串联反应研究
- 批准号:22301211
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
水系锌离子电池协同性能调控及枝晶抑制机理研究
- 批准号:52364038
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于人类血清素神经元报告系统研究TSPYL1突变对婴儿猝死综合征的致病作用及机制
- 批准号:82371176
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
FOXO3 m6A甲基化修饰诱导滋养细胞衰老效应在补肾法治疗自然流产中的机制研究
- 批准号:82305286
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: SCH: Improving Older Adults' Mobility and Gait Ability in Real-World Ambulation with a Smart Robotic Ankle-Foot Orthosis
合作研究:SCH:使用智能机器人踝足矫形器提高老年人在现实世界中的活动能力和步态能力
- 批准号:
2306660 - 财政年份:2023
- 资助金额:
$ 65.91万 - 项目类别:
Standard Grant
Collaborative Research: SCH: A wireless optoelectronic implant for closed-loop control of bi-hormone secretion from genetically modified islet organoid grafts
合作研究:SCH:一种无线光电植入物,用于闭环控制转基因胰岛类器官移植物的双激素分泌
- 批准号:
2306708 - 财政年份:2023
- 资助金额:
$ 65.91万 - 项目类别:
Standard Grant
Collaborative Research: SCH: AI-driven RFID Sensing for Smart Health Applications
合作研究:SCH:面向智能健康应用的人工智能驱动的 RFID 传感
- 批准号:
2306790 - 财政年份:2023
- 资助金额:
$ 65.91万 - 项目类别:
Standard Grant
Collaborative Research: SCH: Improving Older Adults' Mobility and Gait Ability in Real-World Ambulation with a Smart Robotic Ankle-Foot Orthosis
合作研究:SCH:使用智能机器人踝足矫形器提高老年人在现实世界中的活动能力和步态能力
- 批准号:
2306659 - 财政年份:2023
- 资助金额:
$ 65.91万 - 项目类别:
Standard Grant
Collaborative Research: SCH: Therapeutic and Diagnostic System for Inflammatory Bowel Diseases: Integrating Data Science, Synthetic Biology, and Additive Manufacturing
合作研究:SCH:炎症性肠病的治疗和诊断系统:整合数据科学、合成生物学和增材制造
- 批准号:
2306740 - 财政年份:2023
- 资助金额:
$ 65.91万 - 项目类别:
Standard Grant