MCA: Enhancing Discrete Fracture Network Modeling Using Evolutionary and Quantum Computing to Expand Opportunities of Convergence Research

MCA:利用进化和量子计算增强离散断裂网络建模,扩大融合研究的机会

基本信息

项目摘要

This award is funded in whole or in part under the American Rescue Plan Act of 2021 (Public Law 117-2).Efficient and accurate numerical modeling of flow and transport processes in fractured rocks is necessary in a wide array of fields. One common numerical method to simulate groundwater flow and contaminant transport in fractured rocks is the discrete fracture network (DFN) modeling approach. The project enhances the computational performance and functionality of DFN models by integrating them with techniques from the field of evolutionary and quantum computing. This will lead to more robust tools for ensuring safe and sustainable use of fractured rock systems, and will enable scientific advances at the convergence of subsurface hydrology, quantum computing, and artificial-intelligence-inspired methods. The project also contributes to a course on computational methods in fracture networks and provides training to a graduate student. The research approach focuses on: 1) graph representations of fracture networks and determination of reduced-order models to include diffusional exchanges with the surrounding impermeable rock matrix, 2) customization of evolutionary computing optimization (ECO) encoding schemes and fitness evaluation computations to further reduce complexity of networks, and 3) use of quantum computing algorithms for large linear systems to obtain flow solutions across a multitude of scales in fracture networks. Existing DFN models will be enhanced by adding heat transport capabilities to create DFN-Thermal models. Identification of backbone in DFNs, which is traditionally done through extensive particle-based simulations or machine learning methods, will be approached in this project as a multi-objective optimization problem where ECO algorithms will simultaneously optimize a “population” of backbones rather than a single backbone, and along with effective operators (selection, crossover, mutation) would determine the optimal solution. By providing improved simulation platform and evaluation framework to assess controls on flow and transport processes in fracture networks, the project will serve to expand the application of DFN models to problems of higher degrees of complexity and at larger scales.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该奖项是根据2021年的《 Anericue Plan Act》(公共法律117-2)进行的在裂缝岩石中模拟流量和污染物的方法是离散的骨折网络,通过将其与来自LLD量子量的技术的技术集成在一起,从而增强了DFN模型的计算机性能。 ACE水文学,量子计算和人工智能启发的方法。岩石矩阵,2)自定义跨越骨折网络中的量表的进化构造s n ocods of School Searths System,以创建DFN-thermal模型。或机器rning方法,将在本项目中批准为多目标问题,在这种问题中,生态算法将同时优化骨架而不是单个骨架,并且与有效的操作员(选择,交叉,突变)一起,将降低最佳状态丁的改进的模拟平台框架可以评估裂缝网络中流动和运输过程的控制,以扩大更高程度和较大尺度的DFN模型的应用。该奖项反映了NSF'SF'SF'Story Mission,已被认为是值得的。使用Toundation的智力优点和更广泛的影响审查标准通过评估来支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rishi Parashar其他文献

Rishi Parashar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

云边端融合下隐私增强的高可用智能计算协同技术
  • 批准号:
    62302207
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
超级增强子驱动的TCFL4结合p300调控骨肉瘤脂代谢重编程的机制研究
  • 批准号:
    82303201
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
混驾环境下知识与数据增强的智能汽车博弈决策研究
  • 批准号:
    62373163
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
C17ORF49/BPTF/BORIS通过增强子重编程促进ERα阳性乳腺癌内分泌治疗耐药的功能及分子机制研究
  • 批准号:
    82303138
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
超级增强子驱动hnRNP D介导脂代谢重编程促进外周T细胞淋巴瘤阿霉素耐药的机制研究
  • 批准号:
    82300218
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

I-Corps: Translation Potential of Cellulose-Nanofiber-Based Surface Agents for Enhancing Bioactive Filtration Efficiency
I-Corps:纤维素纳米纤维基表面剂在提高生物活性过滤效率方面的转化潜力
  • 批准号:
    2401619
  • 财政年份:
    2024
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
Collaborative Research: HNDS-I: NewsScribe - Extending and Enhancing the Media Cloud Searchable Global Online News Archive
合作研究:HNDS-I:NewsScribe - 扩展和增强媒体云可搜索全球在线新闻档案
  • 批准号:
    2341858
  • 财政年份:
    2024
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
Collaborative Research: HNDS-I: NewsScribe - Extending and Enhancing the Media Cloud Searchable Global Online News Archive
合作研究:HNDS-I:NewsScribe - 扩展和增强媒体云可搜索全球在线新闻档案
  • 批准号:
    2341859
  • 财政年份:
    2024
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Frameworks: hpcGPT: Enhancing Computing Center User Support with HPC-enriched Generative AI
协作研究:框架:hpcGPT:通过 HPC 丰富的生成式 AI 增强计算中心用户支持
  • 批准号:
    2411297
  • 财政年份:
    2024
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
Collaborative Research: Frameworks: hpcGPT: Enhancing Computing Center User Support with HPC-enriched Generative AI
协作研究:框架:hpcGPT:通过 HPC 丰富的生成式 AI 增强计算中心用户支持
  • 批准号:
    2411298
  • 财政年份:
    2024
  • 资助金额:
    $ 39.99万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了