Collaborative Research: Understanding Urban Resilience to Pluvial Floods Using Reduced-Order Modeling
合作研究:使用降阶模型了解城市对洪涝灾害的抵御能力
基本信息
- 批准号:2053429
- 负责人:
- 金额:$ 28.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-01 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Flooding is exacerbated in urban landscapes, where intense rainfall combines with high levels of impervious land cover to produce flooding in areas not immediately adjacent to rivers and their traditionally defined floodplains. Recent events across the nation have demonstrated that this type of flooding (termed ‘pluvial’) adversely affects urban resilience and is a major contributor to overall flood damage and fatalities. Despite the increasing recognition of its importance, pluvial flooding remains poorly understood because of the failure of conventional rainfall predictions and inundation assessment methods to assess the likelihood and severity of its occurrence, and the extreme computational cost of more sophisticated models that could otherwise help address this knowledge gap. By focusing on extreme summer precipitation and flooding in densely populated urban areas, this Disaster Resilience Research Grants (DRRG) project will address the precursors to and the occurrence of flooding hazard phenomena, as well as the uncertainty associated with its prediction. By enabling quantification of the likelihood of a flood hazard outside of riverine floodplains, this research will inform disaster management planning at scales of engineering practice. This project hypothesizes that (i) modern techniques in probabilistic analysis can simplify the representation of extreme rainfall processes that produce pluvial floods; that (ii) both surface drainage network and flow hydrodynamic features within an urban landscape determine the formation of floods outside of riverine areas; and that (iii) flood “surrogate” modeling combined with high-fidelity, first-principles modeling is indispensable for computational discovery in flood science and the development of practical tools to enhance the resilience of urban environments to pluvial flooding. The specific objectives of this research are (1) to demonstrate the potential for flood prediction using state-of-the-science rainfall and land surface data and hybrid modeling approaches; (2) to address the project hypotheses through a combination of state-of-the-science data, modeling, and uncertainty quantification methods; and (3) to distribute developed tools through open-source software packages. Project activities will focus on a case study urban watershed in a suburban area of Detroit identified by regional stakeholders as one key area to understand the formation and management of stormwater.This proposal is co-funded by NSF-NIST Disaster Resilience Research Grants and NSF's Hydrologic Sciences Program.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
城市景观中的洪水加剧,强烈的降雨与高度不透水的土地覆盖相结合,在不紧邻河流及其传统定义的洪泛区的地区产生洪水,全国各地最近发生的事件表明,这种类型的洪水(称为“雨洪”)。 ' ')对城市的恢复能力产生不利影响,并且是造成总体洪水损失和死亡的主要原因,尽管人们越来越认识到其重要性,但由于传统的降雨预测和洪水评估方法无法评估洪水的可能性,人们对洪水的了解仍然很少。其发生的严重性,以及更复杂模型的极端计算成本,这些模型本来可以帮助解决这一知识差距,通过关注人口稠密的城市地区的极端夏季降水和洪水,该抗灾研究补助金(DRRG)项目将解决这一问题。通过量化河流洪泛区之外洪水灾害的可能性,该研究将为工程实践规模的灾害管理规划提供信息。保留那个(i) 现代概率分析技术可以简化产生洪水的极端降雨过程的表示; (ii) 城市景观内的地表排水网络和水流动力学特征决定了河流地区以外洪水的形成; iii) 洪水“替代”建模与高保真第一原理建模相结合,对于洪水科学的计算发现和开发实用工具以增强城市环境对雨洪的抵御能力是必不可少的。这项研究的目的是 (1) 展示利用最先进的降雨和地表数据以及混合建模方法进行洪水预测的潜力;(2) 通过结合最先进的科学方法来解决项目假设;数据、建模和不确定性量化方法;(3) 通过开源软件包分发开发的工具 项目活动将重点关注被区域利益相关者确定为关键区域的底特律郊区的城市流域。了解雨水的形成和管理。该提案是共同资助的该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优势和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Controls of Variability in the Laurentian Great Lakes Terrestrial Water Budget
劳伦五大湖陆地水收支变化的控制
- DOI:10.1029/2022wr033759
- 发表时间:2023-09-25
- 期刊:
- 影响因子:5.4
- 作者:S. Minallah;Allison L. Steiner;Valeriy Y. Ivanov;Andrew W. Wood
- 通讯作者:Andrew W. Wood
Closing in on Hydrologic Predictive Accuracy: Combining the Strengths of High‐Fidelity and Physics‐Agnostic Models
接近水文预测精度:结合高保真度和物理不可知模型的优势
- DOI:10.1029/2023gl104464
- 发表时间:2023-09-07
- 期刊:
- 影响因子:5.2
- 作者:V. N. Tran;V. Ivanov;Donghui Xu;Jongho Kim
- 通讯作者:Jongho Kim
A deep learning modeling framework with uncertainty quantification for inflow-outflow predictions for cascade reservoirs
用于梯级水库流入流出预测的具有不确定性量化的深度学习建模框架
- DOI:10.1016/j.jhydrol.2024.130608
- 发表时间:2024-02
- 期刊:
- 影响因子:6.4
- 作者:Ngoc Tran, Vinh;Ivanov, Valeriy Y.;Tien Nguyen, Giang;Ngoc Anh, Tran;Huy Nguyen, Phuong;Kim, Dae;Kim, Jongho
- 通讯作者:Kim, Jongho
Data reformation – A novel data processing technique enhancing machine learning applicability for predicting streamflow extremes
数据重组 – 一种新颖的数据处理技术,增强机器学习在预测水流极端情况方面的适用性
- DOI:10.1016/j.advwatres.2023.104569
- 发表时间:2023-12-01
- 期刊:
- 影响因子:4.7
- 作者:V. N. Tran;V. Ivanov;Jongho Kim
- 通讯作者:Jongho Kim
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Valeriy Ivanov其他文献
Cross-Layer Methods for Ad Hoc Networks - Review and Classification
Ad Hoc 网络的跨层方法 - 回顾和分类
- DOI:
10.3390/fi16010029 - 发表时间:
2024-01-16 - 期刊:
- 影响因子:3.4
- 作者:
Valeriy Ivanov;Maxim Tereshonok - 通讯作者:
Maxim Tereshonok
Hydraulic traits explain differential responses of Amazonian forests to the 2015 El 15 Nino-induced drought 16
水力特征解释了亚马逊森林对 2015 年厄尔尼诺现象引起的干旱 15 的差异反应 16
- DOI:
- 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Fernanda V. Barros;P.R.L. Bittencourt;M. Brum;;17;Coupe;Luciano Pereira;G. Teodoro;S. Saleska;L. Borma;B. Christoffersen;D. Penha;Luciana F. Alves;Adriano J. N. Lima;V. Carneiro;P. Gentine;Jung;L. E. Aragão;Valeriy Ivanov;Leila S. M. Leal;Alessandro C. Araújo;Rafael S. Oliveira - 通讯作者:
Rafael S. Oliveira
Valeriy Ivanov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Valeriy Ivanov', 18)}}的其他基金
Collaborative Research: RAPID: A perfect storm: will the double-impact of 2023/24 El Nino drought and forest degradation induce a local tipping-point onset in the eastern Amazon?
合作研究:RAPID:一场完美风暴:2023/24厄尔尼诺干旱和森林退化的双重影响是否会导致亚马逊东部地区出现局部临界点?
- 批准号:
2403882 - 财政年份:2024
- 资助金额:
$ 28.27万 - 项目类别:
Standard Grant
Collaborative Research: NNA Research: Interactions of natural and social systems with climate change, globalization, and infrastructure development in the Arctic
合作研究:NNA 研究:自然和社会系统与气候变化、全球化和北极基础设施发展的相互作用
- 批准号:
2126792 - 财政年份:2022
- 资助金额:
$ 28.27万 - 项目类别:
Standard Grant
Collaborative research: Cascade “Ecohydromics” in the Amazonian Headwater System
合作研究:亚马逊河源头系统的级联“生态水文学”
- 批准号:
2111028 - 财政年份:2022
- 资助金额:
$ 28.27万 - 项目类别:
Standard Grant
NNA Track 2: Collaborative Research: Interactions of environmental and land surface change, animals, infrastructure, and peoples of the Arctic
NNA 轨道 2:合作研究:环境和地表变化、动物、基础设施和北极人民的相互作用
- 批准号:
1928014 - 财政年份:2019
- 资助金额:
$ 28.27万 - 项目类别:
Standard Grant
Collaborative Research: Are Amazon forest trees source or sink limited? Mapping hydraulic traits to carbon allocation strategies to decipher forest function during drought
合作研究:亚马逊森林树木的来源或汇是否有限?
- 批准号:
1754163 - 财政年份:2018
- 资助金额:
$ 28.27万 - 项目类别:
Standard Grant
Collaborative Research: Hydrologic and Permafrost Changes Due to Tree Expansion into Tundra
合作研究:树木扩展到苔原导致的水文和永久冻土变化
- 批准号:
1725654 - 财政年份:2017
- 资助金额:
$ 28.27万 - 项目类别:
Standard Grant
CAREER: A Multi-Scale Approach to Assessment of Climate Change Impacts on Hydrologic and Geomorphic Response of Watershed Systems within an Uncertainty Framework
职业:在不确定性框架内评估气候变化对流域系统水文和地貌响应影响的多尺度方法
- 批准号:
1151443 - 财政年份:2012
- 资助金额:
$ 28.27万 - 项目类别:
Continuing Grant
Collaborative research: Linking Heterogeneity of Above-Ground and Subsurface Processes at the Gap-Canopy Patch Scales to Ecosystem Level Dynamics
合作研究:将间隙冠层斑块尺度的地上和地下过程的异质性与生态系统水平动态联系起来
- 批准号:
0911444 - 财政年份:2009
- 资助金额:
$ 28.27万 - 项目类别:
Standard Grant
相似国自然基金
面向真实场景的基于人体关节点的行为理解研究
- 批准号:62302093
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于脉冲神经元内在可塑性建模的类脑智能交互意图理解研究
- 批准号:62376261
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
多模态数学问题理解和类人解答方法研究
- 批准号:62376012
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
面向开放场景的多模态视频表征与理解研究
- 批准号:62376069
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于深度理解的大规模互联网虚假新闻检测研究
- 批准号:62302333
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
- 批准号:
2327826 - 财政年份:2024
- 资助金额:
$ 28.27万 - 项目类别:
Continuing Grant
Collaborative Research: Understanding and Manipulating Magnetism and Spin Dynamics in Intercalated van der Waals Magnets
合作研究:理解和操纵插层范德华磁体中的磁性和自旋动力学
- 批准号:
2327827 - 财政年份:2024
- 资助金额:
$ 28.27万 - 项目类别:
Continuing Grant
Collaborative Research: Chain Transform Fault: Understanding the dynamic behavior of a slow-slipping oceanic transform system
合作研究:链变换断层:了解慢滑海洋变换系统的动态行为
- 批准号:
2318851 - 财政年份:2024
- 资助金额:
$ 28.27万 - 项目类别:
Continuing Grant
Collaborative Research: Understanding the discharge mechanism at solid/aprotic interfaces of Na-O2 battery cathodes to enhance cell cyclability
合作研究:了解Na-O2电池阴极固体/非质子界面的放电机制,以增强电池的循环性能
- 批准号:
2342025 - 财政年份:2024
- 资助金额:
$ 28.27万 - 项目类别:
Standard Grant
Collaborative Research: Understanding the Role of Surface Bound Ligands on Metals in H2O2 Direct Synthesis
合作研究:了解金属表面结合配体在 H2O2 直接合成中的作用
- 批准号:
2349883 - 财政年份:2024
- 资助金额:
$ 28.27万 - 项目类别:
Continuing Grant