DMREF/Collaborative Research: Grain Interface Functional Design to Create Damage Resistance in Polycrystalline Metallic Materials
DMREF/合作研究:晶粒界面功能设计以提高多晶金属材料的抗损伤能力
基本信息
- 批准号:2118673
- 负责人:
- 金额:$ 48.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-01 至 2025-12-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Even though polycrystalline metallic materials are ubiquitous in daily life, when and where metallic structural components damage and fail is difficult to predict, which generally leads to overdesign. One form of damage – ductile damage – takes place in materials which are easily plastically deformed by formation of voids and localized shear bands. The initiation of these voids is strongly influenced by the internal constitution of the aggregate composite made up of single crystals comprising the polycrystalline metal. High-purity metals often form voids at the boundaries between single crystals, but it is not known why. This Designing Materials to Revolutionize and Engineer our Future (DMREF) award supports the fundamental study of voids-based ductile damage in high-purity metals to enable the manufacture of materials for specific applications with significantly reduced propensity for void formation. In addition, this project will facilitate collaboration with the Air Force Research Laboratory to pursue design of new materials and manufacturing techniques for strategic purposes. This highly collaborative project will also allow students the opportunity to engage on three campuses, the Air Force Research Laboratory, and a couple of Department of Energy Laboratories to assist in educating the next generation of scientists and engineers in strategically important disciplines. Designing material interfaces to resist formation of voids during tensile deformation will be a significant contribution to the Materials Genome Initiative. This award addresses control of feature and defect character as well as the internal stress state for the design and manufacture of polycrystalline metals against failure. Ductile damage generally includes the processes of void nucleation, growth, and coalescence in addition to localized shear banding. This project is for a new three-dimensional sample design for both rod and plate forms of material, which will be a surrogate for a general structural component for large deformation. High-purity refractory body-centered cubic tantalum is selected as the model material due to its potential for extreme environment use. This material is known to form voids predominantly at grain boundaries and will be the focal point of material design through advanced manufacturing processes. The material design process will include the highly interactive elements of nano, micro and macro-scale experiments at varying strain rates and temperatures, molecular dynamics simulations, thermodynamically consistent plasticity and theory development, micro-scale polycrystal simulations, and macro-scale damage simulations for component design. The highlight of the approach is the uncertainty quantification via machine learning for self-consistent consolidation of large experimental and simulation datasets to guide material design and manufacturing process. The goal of this project is to design a manufacturing process to produce material which reduces damage by 30% over that in the as-received and annealed state.This project is jointly funded by the Division of Civil, Mechanical and Manufacturing Innovation (CMMI) in the Directorate for Engineering (ENG), the Divisions of Materials Research (DMR) and Mathematical Sciences (DMS) in the Directorate for Mathematical and Physical Sciences (MPS), and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
即使多晶金属材料在日常生活中无处不在,但金属结构成分的何时何地损害和失败很难预测,这通常会导致过度设计。一种损坏的形式 - 延性损伤 - 发生在材料中,这些材料很容易通过空隙和局部剪切带形成塑性变形。这些空隙的主动性受到由单晶体高纯度金属组成的聚集体的内部构型的强烈影响,通常在单晶之间的边界形成空隙,但尚不知道为什么。这种设计材料彻底改变和设计我们的未来(DMREF)奖,支持了对高纯度金属中基于空隙的延性损害的基本研究,以使制造特定应用的材料,并大大降低了空隙形成的承诺。此外,该项目将促进与空军研究实验室的合作,以购买新材料和制造技术的设计,以进行战略目的。这个高度协作的项目还将使学生有机会在三个校园,空军研究实验室和几个能源实验室参与其中,以协助教育下一代科学家和工程师在战略上重要的学科中。设计材料界面以抵抗拉伸变形过程中的空隙形成将是对材料基因组倡议的重要贡献。该奖项旨在解决特征和缺陷特征的控制以及用于设计和制造多晶金属反对故障的内部应力状态。延性损伤通常还包括除局部剪切带外的空隙成核,生长和聚结的过程。该项目是针对杆和板材料板形式的新的三维样品设计,这将是用于大变形的一般结构成分的替代物。高纯度耐火疗法以身体为中心的立方塔塔勒姆被选择作为模型材料,因为它可能会使用极端环境。已知该材料主要在晶界形成空隙,并且将是通过先进的制造过程的材料设计的焦点。材料设计过程将包括纳米,微观和宏观尺度实验的高度交互性元素以不同的应变速率进行,方法的亮点是通过机器学习进行不确定性定量,以自谐固结大型实验和仿真数据集,以指导材料设计和制造过程。该项目的目的是设计制造过程,以生产减少损坏的材料。 by 30% over that in the as-received and annealed state.This project is jointly funded by the Division of Civil, Mechanical and Manufacturing Innovation (CMMI) in the Directorate for Engineering (ENG), the Divisions of Materials Research (DMR) and Mathematical Sciences (DMS) in the Directorate for Mathematical and Physical Sciences (MPS), and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF的法定使命,并使用基金会的知识分子优点和更广泛的审查标准来评估,被认为是宝贵的支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Siddhartha Pathak其他文献
Lamellar Level Correlations Between Mechanical Behavior and Composition in Mouse Bone
小鼠骨机械行为与成分之间的层状水平相关性
- DOI:
10.1007/s11837-021-04808-6 - 发表时间:
2021 - 期刊:
- 影响因子:2.6
- 作者:
Shraddha J. Vachhani;S. Kalidindi;Thomas Burr;Siddhartha Pathak - 通讯作者:
Siddhartha Pathak
Development and validation of a novel data analysis procedure for spherical nanoindentation
球形纳米压痕新型数据分析程序的开发和验证
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Siddhartha Pathak - 通讯作者:
Siddhartha Pathak
Time and frequency dependent mechanical properties of LaCoO3-based perovskites: Internal friction and negative creep
LaCoO3 基钙钛矿的时间和频率依赖性机械性能:内摩擦和负蠕变
- DOI:
10.1063/1.5037049 - 发表时间:
2018 - 期刊:
- 影响因子:3.2
- 作者:
M. Lugovy;N. Orlovskaya;Siddhartha Pathak;M. Radovic;E. Lara‐Curzio;D. Verbylo;J. Kuebler;T. Graule;M. Reece - 通讯作者:
M. Reece
Caught in the act: Grain-switching and quadrijunction formation in annealed aluminum
陷入困境:退火铝中的晶粒转换和四结形成
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Siddhartha Pathak;R. Doherty;A. Rollett;J. Michler;K. Wasmer - 通讯作者:
K. Wasmer
Importance of surface preparation on the nano-indentation stress-strain curves measured in metals
表面处理对金属纳米压痕应力-应变曲线测量的重要性
- DOI:
10.1557/jmr.2009.0137 - 发表时间:
2009 - 期刊:
- 影响因子:2.7
- 作者:
Siddhartha Pathak;D. Stojakovic;R. Doherty;S. Kalidindi - 通讯作者:
S. Kalidindi
Siddhartha Pathak的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Siddhartha Pathak', 18)}}的其他基金
CAREER: Towards a Fundamental Understanding of Interface Strain-Driven Pseudomorphic Phase Transformation in Multilayered Nanocomposites
职业生涯:对多层纳米复合材料中界面应变驱动的赝晶相变有一个基本的了解
- 批准号:
2340965 - 财政年份:2024
- 资助金额:
$ 48.48万 - 项目类别:
Standard Grant
RII Track-4: Mechanistic Design of Hierarchical Metal-MAX Multilayered Nanocomposites
RII Track-4:分层 Metal-MAX 多层纳米复合材料的机理设计
- 批准号:
2051443 - 财政年份:2020
- 资助金额:
$ 48.48万 - 项目类别:
Standard Grant
RII Track-4: Mechanistic Design of Hierarchical Metal-MAX Multilayered Nanocomposites
RII Track-4:分层 Metal-MAX 多层纳米复合材料的机理设计
- 批准号:
1929208 - 财政年份:2020
- 资助金额:
$ 48.48万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: Understanding How Enamel Prism Lattices Promote a Remarkable Combination of Fracture and Wear Resistance in Grazing Mammal Dentitions
EAGER/合作研究:了解牙釉质棱镜晶格如何促进放牧哺乳动物牙列的抗折性和耐磨性的显着组合
- 批准号:
1937149 - 财政年份:2019
- 资助金额:
$ 48.48万 - 项目类别:
Standard Grant
EAGER: Engineering Metal-MAX Multilayered Nanocomposites: Hierarchical Microstructures for Tunable Strength and Toughness
EAGER:工程 Metal-MAX 多层纳米复合材料:可调节强度和韧性的分层微观结构
- 批准号:
1841331 - 财政年份:2018
- 资助金额:
$ 48.48万 - 项目类别:
Standard Grant
相似国自然基金
数智背景下的团队人力资本层级结构类型、团队协作过程与团队效能结果之间关系的研究
- 批准号:72372084
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
在线医疗团队协作模式与绩效提升策略研究
- 批准号:72371111
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
面向人机接触式协同作业的协作机器人交互控制方法研究
- 批准号:62373044
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于数字孪生的颅颌面人机协作智能手术机器人关键技术研究
- 批准号:82372548
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
A-型结晶抗性淀粉调控肠道细菌协作产丁酸机制研究
- 批准号:32302064
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
- 批准号:
2413579 - 财政年份:2024
- 资助金额:
$ 48.48万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
- 批准号:
2409552 - 财政年份:2024
- 资助金额:
$ 48.48万 - 项目类别:
Continuing Grant
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
- 批准号:
2411603 - 财政年份:2024
- 资助金额:
$ 48.48万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Topologically Designed and Resilient Ultrahigh Temperature Ceramics
合作研究:DMREF:拓扑设计和弹性超高温陶瓷
- 批准号:
2323458 - 财政年份:2023
- 资助金额:
$ 48.48万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Deep learning guided twistronics for self-assembled quantum optoelectronics
合作研究:DMREF:用于自组装量子光电子学的深度学习引导双电子学
- 批准号:
2323470 - 财政年份:2023
- 资助金额:
$ 48.48万 - 项目类别:
Standard Grant