DMREF/Collaborative Research: Grain Interface Functional Design to Create Damage Resistance in Polycrystalline Metallic Materials
DMREF/合作研究:晶粒界面功能设计以提高多晶金属材料的抗损伤能力
基本信息
- 批准号:2118673
- 负责人:
- 金额:$ 48.48万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-01-01 至 2025-12-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Even though polycrystalline metallic materials are ubiquitous in daily life, when and where metallic structural components damage and fail is difficult to predict, which generally leads to overdesign. One form of damage – ductile damage – takes place in materials which are easily plastically deformed by formation of voids and localized shear bands. The initiation of these voids is strongly influenced by the internal constitution of the aggregate composite made up of single crystals comprising the polycrystalline metal. High-purity metals often form voids at the boundaries between single crystals, but it is not known why. This Designing Materials to Revolutionize and Engineer our Future (DMREF) award supports the fundamental study of voids-based ductile damage in high-purity metals to enable the manufacture of materials for specific applications with significantly reduced propensity for void formation. In addition, this project will facilitate collaboration with the Air Force Research Laboratory to pursue design of new materials and manufacturing techniques for strategic purposes. This highly collaborative project will also allow students the opportunity to engage on three campuses, the Air Force Research Laboratory, and a couple of Department of Energy Laboratories to assist in educating the next generation of scientists and engineers in strategically important disciplines. Designing material interfaces to resist formation of voids during tensile deformation will be a significant contribution to the Materials Genome Initiative. This award addresses control of feature and defect character as well as the internal stress state for the design and manufacture of polycrystalline metals against failure. Ductile damage generally includes the processes of void nucleation, growth, and coalescence in addition to localized shear banding. This project is for a new three-dimensional sample design for both rod and plate forms of material, which will be a surrogate for a general structural component for large deformation. High-purity refractory body-centered cubic tantalum is selected as the model material due to its potential for extreme environment use. This material is known to form voids predominantly at grain boundaries and will be the focal point of material design through advanced manufacturing processes. The material design process will include the highly interactive elements of nano, micro and macro-scale experiments at varying strain rates and temperatures, molecular dynamics simulations, thermodynamically consistent plasticity and theory development, micro-scale polycrystal simulations, and macro-scale damage simulations for component design. The highlight of the approach is the uncertainty quantification via machine learning for self-consistent consolidation of large experimental and simulation datasets to guide material design and manufacturing process. The goal of this project is to design a manufacturing process to produce material which reduces damage by 30% over that in the as-received and annealed state.This project is jointly funded by the Division of Civil, Mechanical and Manufacturing Innovation (CMMI) in the Directorate for Engineering (ENG), the Divisions of Materials Research (DMR) and Mathematical Sciences (DMS) in the Directorate for Mathematical and Physical Sciences (MPS), and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
尽管多晶金属材料在日常生活中无处不在,但金属结构部件损坏和失效的时间和地点很难预测,这通常会导致过度设计,一种形式的损坏——延性损坏——发生在容易因成型而塑性变形的材料中。空隙和局部剪切带的产生受到通常形成的由包含多晶金属的单晶组成的聚集体复合材料的内部构造的强烈影响。单晶之间的边界处存在空隙,但目前尚不清楚这一设计材料革命和工程我们的未来 (DMREF) 奖项支持对高纯度金属中基于空隙的延性损伤的基础研究,以实现材料的制造。此外,该项目将促进与空军研究实验室的合作,以实现战略目的的新材料和制造技术的设计。三个校区,空军研究实验室和几个能源部实验室将协助教育下一代科学家和工程师,研究具有战略意义的重要学科,设计材料界面以抵抗拉伸变形过程中空隙的形成,这将对材料基因组做出重大贡献。该奖项旨在解决多晶金属设计和制造过程中的特征和缺陷特征以及内应力状态的控制问题,延展性损伤通常包括空洞成核、生长和聚结过程。除了局部剪切带之外,该项目还针对棒状和板状材料进行了新的三维样品设计,该样品将成为高变形耐火体心立方钽的通用结构部件的替代品。由于其在极端环境下使用的潜力,该材料被选为模型材料,该材料主要在晶界处形成空隙,并且将成为通过先进制造工艺进行材料设计的焦点。纳米、微米该方法的亮点是通过机器进行不确定性量化。学习对大型实验和模拟数据集进行自洽整合,以指导材料设计和制造产品。该项目的目标是设计一种制造工艺,使材料的损坏程度比原始材料减少 30%。该项目由工程部 (ENG) 土木、机械和制造创新部 (CMMI)、数学和数学部材料研究部 (DMR) 和数学科学部 (DMS) 联合资助物理科学 (MPS) 和刺激竞争研究既定计划 (EPSCoR)。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值进行评估,被认为值得支持以及更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Siddhartha Pathak其他文献
Lamellar Level Correlations Between Mechanical Behavior and Composition in Mouse Bone
小鼠骨机械行为与成分之间的层状水平相关性
- DOI:
10.1007/s11837-021-04808-6 - 发表时间:
2021 - 期刊:
- 影响因子:2.6
- 作者:
Shraddha J. Vachhani;S. Kalidindi;Thomas Burr;Siddhartha Pathak - 通讯作者:
Siddhartha Pathak
Development and validation of a novel data analysis procedure for spherical nanoindentation
球形纳米压痕新型数据分析程序的开发和验证
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Siddhartha Pathak - 通讯作者:
Siddhartha Pathak
Time and frequency dependent mechanical properties of LaCoO3-based perovskites: Internal friction and negative creep
LaCoO3 基钙钛矿的时间和频率依赖性机械性能:内摩擦和负蠕变
- DOI:
10.1063/1.5037049 - 发表时间:
2018 - 期刊:
- 影响因子:3.2
- 作者:
M. Lugovy;N. Orlovskaya;Siddhartha Pathak;M. Radovic;E. Lara‐Curzio;D. Verbylo;J. Kuebler;T. Graule;M. Reece - 通讯作者:
M. Reece
Caught in the act: Grain-switching and quadrijunction formation in annealed aluminum
陷入困境:退火铝中的晶粒转换和四结形成
- DOI:
- 发表时间:
2013 - 期刊:
- 影响因子:0
- 作者:
Siddhartha Pathak;R. Doherty;A. Rollett;J. Michler;K. Wasmer - 通讯作者:
K. Wasmer
Importance of surface preparation on the nano-indentation stress-strain curves measured in metals
表面处理对金属纳米压痕应力-应变曲线测量的重要性
- DOI:
10.1557/jmr.2009.0137 - 发表时间:
2009 - 期刊:
- 影响因子:2.7
- 作者:
Siddhartha Pathak;D. Stojakovic;R. Doherty;S. Kalidindi - 通讯作者:
S. Kalidindi
Siddhartha Pathak的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Siddhartha Pathak', 18)}}的其他基金
CAREER: Towards a Fundamental Understanding of Interface Strain-Driven Pseudomorphic Phase Transformation in Multilayered Nanocomposites
职业生涯:对多层纳米复合材料中界面应变驱动的赝晶相变有一个基本的了解
- 批准号:
2340965 - 财政年份:2024
- 资助金额:
$ 48.48万 - 项目类别:
Standard Grant
RII Track-4: Mechanistic Design of Hierarchical Metal-MAX Multilayered Nanocomposites
RII Track-4:分层 Metal-MAX 多层纳米复合材料的机理设计
- 批准号:
2051443 - 财政年份:2020
- 资助金额:
$ 48.48万 - 项目类别:
Standard Grant
RII Track-4: Mechanistic Design of Hierarchical Metal-MAX Multilayered Nanocomposites
RII Track-4:分层 Metal-MAX 多层纳米复合材料的机理设计
- 批准号:
1929208 - 财政年份:2020
- 资助金额:
$ 48.48万 - 项目类别:
Standard Grant
EAGER/Collaborative Research: Understanding How Enamel Prism Lattices Promote a Remarkable Combination of Fracture and Wear Resistance in Grazing Mammal Dentitions
EAGER/合作研究:了解牙釉质棱镜晶格如何促进放牧哺乳动物牙列的抗折性和耐磨性的显着组合
- 批准号:
1937149 - 财政年份:2019
- 资助金额:
$ 48.48万 - 项目类别:
Standard Grant
EAGER: Engineering Metal-MAX Multilayered Nanocomposites: Hierarchical Microstructures for Tunable Strength and Toughness
EAGER:工程 Metal-MAX 多层纳米复合材料:可调节强度和韧性的分层微观结构
- 批准号:
1841331 - 财政年份:2018
- 资助金额:
$ 48.48万 - 项目类别:
Standard Grant
相似国自然基金
基于交易双方异质性的工程项目组织间协作动态耦合研究
- 批准号:72301024
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向5G超高清移动视频传输的协作NOMA系统可靠性研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向协作感知车联网的信息分发时效性保证关键技术研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
数据物理驱动的车间制造服务协作可靠性机理与优化方法研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
医保基金战略性购买促进远程医疗协作网价值共创的制度创新研究
- 批准号:
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
相似海外基金
Collaborative Research: DMREF: Closed-Loop Design of Polymers with Adaptive Networks for Extreme Mechanics
合作研究:DMREF:采用自适应网络进行极限力学的聚合物闭环设计
- 批准号:
2413579 - 财政年份:2024
- 资助金额:
$ 48.48万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Organic Materials Architectured for Researching Vibronic Excitations with Light in the Infrared (MARVEL-IR)
合作研究:DMREF:用于研究红外光振动激发的有机材料 (MARVEL-IR)
- 批准号:
2409552 - 财政年份:2024
- 资助金额:
$ 48.48万 - 项目类别:
Continuing Grant
Collaborative Research: DMREF: AI-enabled Automated design of ultrastrong and ultraelastic metallic alloys
合作研究:DMREF:基于人工智能的超强和超弹性金属合金的自动化设计
- 批准号:
2411603 - 财政年份:2024
- 资助金额:
$ 48.48万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Topologically Designed and Resilient Ultrahigh Temperature Ceramics
合作研究:DMREF:拓扑设计和弹性超高温陶瓷
- 批准号:
2323458 - 财政年份:2023
- 资助金额:
$ 48.48万 - 项目类别:
Standard Grant
Collaborative Research: DMREF: Deep learning guided twistronics for self-assembled quantum optoelectronics
合作研究:DMREF:用于自组装量子光电子学的深度学习引导双电子学
- 批准号:
2323470 - 财政年份:2023
- 资助金额:
$ 48.48万 - 项目类别:
Standard Grant