EAGER: Engineering Metal-MAX Multilayered Nanocomposites: Hierarchical Microstructures for Tunable Strength and Toughness

EAGER:工程 Metal-MAX 多层纳米复合材料:可调节强度和韧性的分层微观结构

基本信息

项目摘要

For a number of applications in manufacturing, energy and infrastructure, materials with high strength and high ductility are needed. Finding both of these properties in the same material, however, is extremely rare. A number of materials engineering approaches seek to create high strength, high ductility materials, including fabricating nanostructured layered structures with alternating materials. This EArly-concept Grants for Exploratory Research (EAGER) award supports an exploratory experimental and computational effort to engineer multi-layered metal-ceramic nanocomposite materials that exhibit tunable strength and toughness. The nanocomposite will be composed of alternating nanoscale metallic and ceramic layers. The ceramic layers are part of the family of ceramic materials known as MAX phase, which themselves are layered carbide or nitride materials. Combining metal layers with MAX layers results in a unique structure with as a complex network of interfaces which will eventually control the behavior of the material. These materials have applications in multiple technological fields, including high temperature structural applications, protective coatings, sensors, tunable damping films for microelectromechanical systems (MEMS), and potential applications in cladding materials for nuclear use. The ability to have a strong yet ductile metal-MAX composite with improved mechanical behavior to satisfy the demands of such applications will provide considerable technological and economic benefits. The research will provide graduate training for a PhD student who will also benefit from the collaboration with Los Alamos National Laboratory.The objectives of this combined modeling and experimental EAGER research are to: a) design and synthesize multi-layered nanocomposites composed of alternating metallic and MAX phase layers with a lamellar thickness reduced to the nanoscale, b) establish a fundamental understanding of the hierarchical interface driven microstructure and microstructure-property relationships using nano-mechanical testing tools (nanoindentation, micro-compression), and c) formulate and validate atomistic models that outline the premise for controlling the activation of specific deformation mode(s) through hierarchical design of metal-MAX nanolaminates, thus tuning their mechanical properties to achieve greater strength and toughness. Upon successful completion of this research, tunable properties will be realized through guided variations in processing parameters from computation, as our nanoscale modeling will unravel the role of interfaces and the hierarchical microstructure of the metal-MAX system.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
对于制造、能源和基础设施领域的许多应用来说,需要具有高强度和高延展性的材料。然而,在同一种材料中同时具备这两种特性的情况极为罕见。许多材料工程方法寻求创造高强度、高延展性材料,包括用交替材料制造纳米结构层状结构。这项早期概念探索性研究资助 (EAGER) 奖项支持探索性实验和计算工作,以设计具有可调强度和韧性的多层金属陶瓷纳米复合材料。纳米复合材料将由交替的纳米级金属层和陶瓷层组成。陶瓷层是称为 MAX 相的陶瓷材料系列的一部分,其本身是层状碳化物或氮化物材料。将金属层与 MAX 层相结合会产生独特的结构,并具有复杂的界面网络,最终将控制材料的行为。这些材料在多个技术领域都有应用,包括高温结构应用、保护涂层、传感器、微机电系统(MEMS)的可调阻尼膜以及核用包层材料的潜在应用。拥有坚固且具有延展性的金属-MAX 复合材料并具有改进的机械性能来满足此类应用的需求,将带来可观的技术和经济效益。该研究将为博士生提供研究生培训,博士生也将受益于与洛斯阿拉莫斯国家实验室的合作。这项结合建模和实验性 EAGER 研究的目标是:a) 设计和合成由交替金属和纳米粒子组成的多层纳米复合材料。层状厚度减少到纳米级的 MAX 相层,b) 使用纳米机械测试工具(纳米压痕、微压缩)建立对分层界面驱动的微观结构和微观结构-性能关系的基本理解, c) 制定并验证原子模型,该模型概述了通过金属-MAX纳米层压板的分层设计控制特定变形模式激活的前提,从而调整其机械性能以实现更高的强度和韧性。成功完成这项研究后,将通过计算处理参数的引导变化来实现可调特性,因为我们的纳米级建模将揭示界面的作用和金属 MAX 系统的分层微观结构。该奖项反映了 NSF 的法定使命,并具有通过使用基金会的智力优点和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Nanoindentation deformation and cracking in sapphire
  • DOI:
    10.1016/j.ceramint.2019.02.022
  • 发表时间:
    2019-06
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    V. Trabadelo;Siddhartha Pathak;F. Saeidi;M. Parlińska-Wojtan;K. Wasmer
  • 通讯作者:
    V. Trabadelo;Siddhartha Pathak;F. Saeidi;M. Parlińska-Wojtan;K. Wasmer
Elevated and cryogenic temperature micropillar compression of magnesium–niobium multilayer films
镁铌多层薄膜的高温和低温微柱压缩
  • DOI:
    10.1007/s10853-019-03422-x
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
    Thomas, K;Mohanty, G;Wehrs, J;Taylor, AA;Pathak, S;Casari, D;Schwiedrzik, J;Mara, N;Spolenak, R;Michler, J
  • 通讯作者:
    Michler, J
High temperature nanoindentation of Cu–TiN nanolaminates
Cu−TiN 纳米层压材料的高温纳米压痕
  • DOI:
    10.1016/j.msea.2020.140522
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wheeler, Jeffrey M.;Harvey, Cayla;Li, Nan;Misra, Amit;Mara, Nathan A.;Maeder, Xavier;Michler, Johann;Pathak, Siddhartha
  • 通讯作者:
    Pathak, Siddhartha
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Siddhartha Pathak其他文献

Development and validation of a novel data analysis procedure for spherical nanoindentation
球形纳米压痕新型数据分析程序的开发和验证
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Siddhartha Pathak
  • 通讯作者:
    Siddhartha Pathak
Lamellar Level Correlations Between Mechanical Behavior and Composition in Mouse Bone
小鼠骨机械行为与成分之间的层状水平相关性
  • DOI:
    10.1007/s11837-021-04808-6
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Shraddha J. Vachhani;S. Kalidindi;Thomas Burr;Siddhartha Pathak
  • 通讯作者:
    Siddhartha Pathak
Time and frequency dependent mechanical properties of LaCoO3-based perovskites: Internal friction and negative creep
LaCoO3 基钙钛矿的时间和频率依赖性机械性能:内摩擦和负蠕变
  • DOI:
    10.1063/1.5037049
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    M. Lugovy;N. Orlovskaya;Siddhartha Pathak;M. Radovic;E. Lara‐Curzio;D. Verbylo;J. Kuebler;T. Graule;M. Reece
  • 通讯作者:
    M. Reece
Caught in the act: Grain-switching and quadrijunction formation in annealed aluminum
陷入困境:退火铝中的晶粒转换和四结形成
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Siddhartha Pathak;R. Doherty;A. Rollett;J. Michler;K. Wasmer
  • 通讯作者:
    K. Wasmer
Importance of surface preparation on the nano-indentation stress-strain curves measured in metals
表面处理对金属纳米压痕应力-应变曲线测量的重要性
  • DOI:
    10.1557/jmr.2009.0137
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Siddhartha Pathak;D. Stojakovic;R. Doherty;S. Kalidindi
  • 通讯作者:
    S. Kalidindi

Siddhartha Pathak的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Siddhartha Pathak', 18)}}的其他基金

CAREER: Towards a Fundamental Understanding of Interface Strain-Driven Pseudomorphic Phase Transformation in Multilayered Nanocomposites
职业生涯:对多层纳米复合材料中界面应变驱动的赝晶相变有一个基本的了解
  • 批准号:
    2340965
  • 财政年份:
    2024
  • 资助金额:
    $ 22.34万
  • 项目类别:
    Standard Grant
DMREF/Collaborative Research: Grain Interface Functional Design to Create Damage Resistance in Polycrystalline Metallic Materials
DMREF/合作研究:晶粒界面功能设计以提高多晶金属材料的抗损伤能力
  • 批准号:
    2118673
  • 财政年份:
    2022
  • 资助金额:
    $ 22.34万
  • 项目类别:
    Continuing Grant
RII Track-4: Mechanistic Design of Hierarchical Metal-MAX Multilayered Nanocomposites
RII Track-4:分层 Metal-MAX 多层纳米复合材料的机理设计
  • 批准号:
    2051443
  • 财政年份:
    2020
  • 资助金额:
    $ 22.34万
  • 项目类别:
    Standard Grant
RII Track-4: Mechanistic Design of Hierarchical Metal-MAX Multilayered Nanocomposites
RII Track-4:分层 Metal-MAX 多层纳米复合材料的机理设计
  • 批准号:
    1929208
  • 财政年份:
    2020
  • 资助金额:
    $ 22.34万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: Understanding How Enamel Prism Lattices Promote a Remarkable Combination of Fracture and Wear Resistance in Grazing Mammal Dentitions
EAGER/合作研究:了解牙釉质棱镜晶格如何促进放牧哺乳动物牙列的抗折性和耐磨性的显着组合
  • 批准号:
    1937149
  • 财政年份:
    2019
  • 资助金额:
    $ 22.34万
  • 项目类别:
    Standard Grant

相似国自然基金

基于腐蚀工程构筑自支撑贵金属单原子合金及其水裂解性能研究
  • 批准号:
    52371227
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
膜工程化核酸-金属-蛋白全活性纳米药物强化肿瘤乏氧及酸中毒协同靶向抑瘤
  • 批准号:
    32371442
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于粉末床激光成形低层错能金属基复合材料增材制造晶界工程的研究
  • 批准号:
    52305400
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
CNTs/水泥复合材料热电性能的最佳载流子浓度金属氧化物缺陷工程强化机理与方法
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
声子工程调控二维过渡金属硫族物激子输运的作用机制
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Engineering biology for critical metal recovery from industrial wastestreams
从工业废物流中回收关键金属的工程生物学
  • 批准号:
    BB/Y008448/1
  • 财政年份:
    2024
  • 资助金额:
    $ 22.34万
  • 项目类别:
    Research Grant
Metal-Organic Framework-Based Gas Sensors: Structural Engineering for Early Diabetes Diagnosis and Monitoring (SEEDDM)
基于金属有机框架的气体传感器:早期糖尿病诊断和监测的结构工程 (SEEDDM)
  • 批准号:
    EP/Y002318/1
  • 财政年份:
    2024
  • 资助金额:
    $ 22.34万
  • 项目类别:
    Research Grant
安全・簡便・短工程有機合成を実現する遷移金属触媒反応の開発
开发过渡金属催化反应,实现安全、简单、短步骤的有机合成
  • 批准号:
    23K20311
  • 财政年份:
    2024
  • 资助金额:
    $ 22.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Giant modulation of the speed of nonlinear quantum phase transitions in strongly correlated materials via chemical bonding force engineering and its application to emergent neuromorphic devices
通过化学键合力工程对强相关材料中非线性量子相变速度的巨大调制及其在新兴神经形态器件中的应用
  • 批准号:
    23K03919
  • 财政年份:
    2023
  • 资助金额:
    $ 22.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Metal-free, genetically encoded reporters for calcium recording with MRI
用于 MRI 钙记录的无金属基因编码报告基因
  • 批准号:
    10660042
  • 财政年份:
    2023
  • 资助金额:
    $ 22.34万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了