EAGER: Engineering Metal-MAX Multilayered Nanocomposites: Hierarchical Microstructures for Tunable Strength and Toughness

EAGER:工程 Metal-MAX 多层纳米复合材料:可调节强度和韧性的分层微观结构

基本信息

项目摘要

For a number of applications in manufacturing, energy and infrastructure, materials with high strength and high ductility are needed. Finding both of these properties in the same material, however, is extremely rare. A number of materials engineering approaches seek to create high strength, high ductility materials, including fabricating nanostructured layered structures with alternating materials. This EArly-concept Grants for Exploratory Research (EAGER) award supports an exploratory experimental and computational effort to engineer multi-layered metal-ceramic nanocomposite materials that exhibit tunable strength and toughness. The nanocomposite will be composed of alternating nanoscale metallic and ceramic layers. The ceramic layers are part of the family of ceramic materials known as MAX phase, which themselves are layered carbide or nitride materials. Combining metal layers with MAX layers results in a unique structure with as a complex network of interfaces which will eventually control the behavior of the material. These materials have applications in multiple technological fields, including high temperature structural applications, protective coatings, sensors, tunable damping films for microelectromechanical systems (MEMS), and potential applications in cladding materials for nuclear use. The ability to have a strong yet ductile metal-MAX composite with improved mechanical behavior to satisfy the demands of such applications will provide considerable technological and economic benefits. The research will provide graduate training for a PhD student who will also benefit from the collaboration with Los Alamos National Laboratory.The objectives of this combined modeling and experimental EAGER research are to: a) design and synthesize multi-layered nanocomposites composed of alternating metallic and MAX phase layers with a lamellar thickness reduced to the nanoscale, b) establish a fundamental understanding of the hierarchical interface driven microstructure and microstructure-property relationships using nano-mechanical testing tools (nanoindentation, micro-compression), and c) formulate and validate atomistic models that outline the premise for controlling the activation of specific deformation mode(s) through hierarchical design of metal-MAX nanolaminates, thus tuning their mechanical properties to achieve greater strength and toughness. Upon successful completion of this research, tunable properties will be realized through guided variations in processing parameters from computation, as our nanoscale modeling will unravel the role of interfaces and the hierarchical microstructure of the metal-MAX system.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
对于制造,能源和基础设施中的许多应用,需要具有高强度和高延展性的材料。但是,在同一材料中找到这两种特性非常罕见。许多材料工程方法旨在创造高强度,高延展性材料,包括用交替材料制造纳米结构分层结构。这项探索性研究的早期概念授予(急切)奖支持探索性实验和计算工作,以设计具有可调强度和韧性的多层金属陶瓷纳米复合材料。纳米复合材料将由交替的纳米级金属和陶瓷层组成。陶瓷层是称为Max阶段的陶瓷材料家族的一部分,其本身是碳化物或氮化物材料的一部分。将金属层与最大层结合起来会导致独特的结构,并作为一个复杂的接口网络,最终将控制材料的行为。这些材料在多个技术领域都有应用,包括高温结构应用,保护性涂料,传感器,可调式阻尼膜用于微机械系统(MEMS),以及用于核电使用的覆层材料中的潜在应用。具有强大而延性的金属 - 最大综合材料具有改进的机械行为以满足此类应用的需求的能力将提供相当大的技术和经济利益。 The research will provide graduate training for a PhD student who will also benefit from the collaboration with Los Alamos National Laboratory.The objectives of this combined modeling and experimental EAGER research are to: a) design and synthesize multi-layered nanocomposites composed of alternating metallic and MAX phase layers with a lamellar thickness reduced to the nanoscale, b) establish a fundamental understanding of the hierarchical interface driven使用纳米机械测试工具(纳米压力,微型压缩)和c)制定和验证原子模型,这些模型概述了控制特定变形模式的激活(S),通过金属含量纳米酰胺的高级设计,使用特定的变形模式的激活来概述了原子模式,从而使其具有更大的特性,从而概述了控制特定变形模式的激活,从而概述了控制特定的变形模式的前提,从而使其更大的特性和强度实现了强度,从而概述了控制特定变形模式的前提,从而概述了控制特定变形模式的前提,从而使其更大的特性概述了,从而使其具有更大的特性,从而使其具有更大的强度和强度。成功完成这项研究后,将通过计算处理参数的指导性变化来实现可调节属性,因为我们的纳米级建模将揭开界面的作用和金属 - 最大系统的层次微观结构。该奖项反映了NSF的法定任务,并通过评估基金会的智力效果,并通过评估了基金会的范围。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Nanoindentation deformation and cracking in sapphire
  • DOI:
    10.1016/j.ceramint.2019.02.022
  • 发表时间:
    2019-06
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    V. Trabadelo;Siddhartha Pathak;F. Saeidi;M. Parlińska-Wojtan;K. Wasmer
  • 通讯作者:
    V. Trabadelo;Siddhartha Pathak;F. Saeidi;M. Parlińska-Wojtan;K. Wasmer
Elevated and cryogenic temperature micropillar compression of magnesium–niobium multilayer films
镁铌多层薄膜的高温和低温微柱压缩
  • DOI:
    10.1007/s10853-019-03422-x
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
    Thomas, K;Mohanty, G;Wehrs, J;Taylor, AA;Pathak, S;Casari, D;Schwiedrzik, J;Mara, N;Spolenak, R;Michler, J
  • 通讯作者:
    Michler, J
High temperature nanoindentation of Cu–TiN nanolaminates
Cu−TiN 纳米层压材料的高温纳米压痕
  • DOI:
    10.1016/j.msea.2020.140522
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wheeler, Jeffrey M.;Harvey, Cayla;Li, Nan;Misra, Amit;Mara, Nathan A.;Maeder, Xavier;Michler, Johann;Pathak, Siddhartha
  • 通讯作者:
    Pathak, Siddhartha
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Siddhartha Pathak其他文献

Lamellar Level Correlations Between Mechanical Behavior and Composition in Mouse Bone
小鼠骨机械行为与成分之间的层状水平相关性
  • DOI:
    10.1007/s11837-021-04808-6
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
    Shraddha J. Vachhani;S. Kalidindi;Thomas Burr;Siddhartha Pathak
  • 通讯作者:
    Siddhartha Pathak
Development and validation of a novel data analysis procedure for spherical nanoindentation
球形纳米压痕新型数据分析程序的开发和验证
  • DOI:
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Siddhartha Pathak
  • 通讯作者:
    Siddhartha Pathak
Time and frequency dependent mechanical properties of LaCoO3-based perovskites: Internal friction and negative creep
LaCoO3 基钙钛矿的时间和频率依赖性机械性能:内摩擦和负蠕变
  • DOI:
    10.1063/1.5037049
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    3.2
  • 作者:
    M. Lugovy;N. Orlovskaya;Siddhartha Pathak;M. Radovic;E. Lara‐Curzio;D. Verbylo;J. Kuebler;T. Graule;M. Reece
  • 通讯作者:
    M. Reece
Caught in the act: Grain-switching and quadrijunction formation in annealed aluminum
陷入困境:退火铝中的晶粒转换和四结形成
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Siddhartha Pathak;R. Doherty;A. Rollett;J. Michler;K. Wasmer
  • 通讯作者:
    K. Wasmer
Importance of surface preparation on the nano-indentation stress-strain curves measured in metals
表面处理对金属纳米压痕应力-应变曲线测量的重要性
  • DOI:
    10.1557/jmr.2009.0137
  • 发表时间:
    2009
  • 期刊:
  • 影响因子:
    2.7
  • 作者:
    Siddhartha Pathak;D. Stojakovic;R. Doherty;S. Kalidindi
  • 通讯作者:
    S. Kalidindi

Siddhartha Pathak的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Siddhartha Pathak', 18)}}的其他基金

CAREER: Towards a Fundamental Understanding of Interface Strain-Driven Pseudomorphic Phase Transformation in Multilayered Nanocomposites
职业生涯:对多层纳米复合材料中界面应变驱动的赝晶相变有一个基本的了解
  • 批准号:
    2340965
  • 财政年份:
    2024
  • 资助金额:
    $ 22.34万
  • 项目类别:
    Standard Grant
DMREF/Collaborative Research: Grain Interface Functional Design to Create Damage Resistance in Polycrystalline Metallic Materials
DMREF/合作研究:晶粒界面功能设计以提高多晶金属材料的抗损伤能力
  • 批准号:
    2118673
  • 财政年份:
    2022
  • 资助金额:
    $ 22.34万
  • 项目类别:
    Continuing Grant
RII Track-4: Mechanistic Design of Hierarchical Metal-MAX Multilayered Nanocomposites
RII Track-4:分层 Metal-MAX 多层纳米复合材料的机理设计
  • 批准号:
    2051443
  • 财政年份:
    2020
  • 资助金额:
    $ 22.34万
  • 项目类别:
    Standard Grant
RII Track-4: Mechanistic Design of Hierarchical Metal-MAX Multilayered Nanocomposites
RII Track-4:分层 Metal-MAX 多层纳米复合材料的机理设计
  • 批准号:
    1929208
  • 财政年份:
    2020
  • 资助金额:
    $ 22.34万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: Understanding How Enamel Prism Lattices Promote a Remarkable Combination of Fracture and Wear Resistance in Grazing Mammal Dentitions
EAGER/合作研究:了解牙釉质棱镜晶格如何促进放牧哺乳动物牙列的抗折性和耐磨性的显着组合
  • 批准号:
    1937149
  • 财政年份:
    2019
  • 资助金额:
    $ 22.34万
  • 项目类别:
    Standard Grant

相似国自然基金

基于腐蚀工程构筑自支撑贵金属单原子合金及其水裂解性能研究
  • 批准号:
    52371227
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
膜工程化核酸-金属-蛋白全活性纳米药物强化肿瘤乏氧及酸中毒协同靶向抑瘤
  • 批准号:
    32371442
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于粉末床激光成形低层错能金属基复合材料增材制造晶界工程的研究
  • 批准号:
    52305400
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于高熵化工程过渡金属硫化物电磁响应与原形吸波器件一体化研究
  • 批准号:
    52372289
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
CNTs/水泥复合材料热电性能的最佳载流子浓度金属氧化物缺陷工程强化机理与方法
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目

相似海外基金

Engineering biology for critical metal recovery from industrial wastestreams
从工业废物流中回收关键金属的工程生物学
  • 批准号:
    BB/Y008448/1
  • 财政年份:
    2024
  • 资助金额:
    $ 22.34万
  • 项目类别:
    Research Grant
Metal-Organic Framework-Based Gas Sensors: Structural Engineering for Early Diabetes Diagnosis and Monitoring (SEEDDM)
基于金属有机框架的气体传感器:早期糖尿病诊断和监测的结构工程 (SEEDDM)
  • 批准号:
    EP/Y002318/1
  • 财政年份:
    2024
  • 资助金额:
    $ 22.34万
  • 项目类别:
    Research Grant
安全・簡便・短工程有機合成を実現する遷移金属触媒反応の開発
开发过渡金属催化反应,实现安全、简单、短步骤的有机合成
  • 批准号:
    23K20311
  • 财政年份:
    2024
  • 资助金额:
    $ 22.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Giant modulation of the speed of nonlinear quantum phase transitions in strongly correlated materials via chemical bonding force engineering and its application to emergent neuromorphic devices
通过化学键合力工程对强相关材料中非线性量子相变速度的巨大调制及其在新兴神经形态器件中的应用
  • 批准号:
    23K03919
  • 财政年份:
    2023
  • 资助金额:
    $ 22.34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Supplement for Role of Environmental Weathering and Gastrointestinal Digestion on the Bioavailability and Toxicity of Microplastic and Cadmium Mixtures
补充环境风化和胃肠消化对微塑料和镉混合物的生物利用度和毒性的作用
  • 批准号:
    10854398
  • 财政年份:
    2023
  • 资助金额:
    $ 22.34万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了