SBIR Phase I: Highly resource-efficient protein engineering using machine learning
SBIR 第一阶段:利用机器学习实现高度资源效率的蛋白质工程
基本信息
- 批准号:2051603
- 负责人:
- 金额:$ 25.6万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2021-11-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The broader impact/commercial potential of this Small Business Innovation Research (SBIR) Phase I project is to improve, accelerate, and alleviate costs of protein engineering across diverse industries including industrial biocatalysts, biomanufacturing, food technology, and therapeutics. Today, late-stage protein engineering represents a major time, labor, and financial bottleneck. Since real-world translation is the focus of late-stage development, assays are more reflective of their end-use application and therefore necessarily require more time, labor, and capital. This precludes many variants from being screened at this stage. Failure at these late stages of development is costly, and often results from a change in environmental parameters from test conditions in early high throughput screens. Accurate prediction of protein variants based on minimal data but with high likelihood of function under end-use conditions is a critical unmet need.The proposed project will demonstrate the feasibility of leveraging a machine learning model, trained on raw protein sequences, mutagenesis datasets and natural sequence- function pairs, to predict highly functional variants of a protein of interest (POI) without sequence-function datasets specific to the selected POI and application. Such an approach, known as zero-shot learning, has not been applied to protein engineering to date. To achieve this, a large-scale language model will be trained with almost 5 billion curated unlabeled protein sequences from public and private databases and a collection of mutagenesis datasets. This general knowledge model can then be fused with an application-specific top model derived from natural sequences (distinct from the POI) paired with parameters of their natural environments. This training is hypothesized to imbue the model with a notion of which sequence features improve protein function in a general sense, and under particular environmental conditions (e.g., high temperature, high salinity, etc.). To demonstrate the feasibility and utility of this approach, the model will be used in virtual directed evolution experiments to optimize two therapeutically relevant enzymes, optimized for function in non-native environments, and assessed for this function in vitro.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该小企业创新研究 (SBIR) 第一阶段项目的更广泛影响/商业潜力是改善、加速和降低不同行业的蛋白质工程成本,包括工业生物催化剂、生物制造、食品技术和治疗学。如今,后期蛋白质工程是一个主要的时间、劳动力和财务瓶颈。由于现实世界的翻译是后期开发的重点,因此分析更能反映其最终用途应用,因此必然需要更多的时间、劳动力和资本。这使得许多变种无法在此阶段进行筛选。开发后期阶段的失败代价高昂,并且通常是由于早期高通量筛选中测试条件的环境参数变化造成的。基于最少的数据准确预测蛋白质变体,但在最终使用条件下具有很高的功能可能性,这是一个未满足的关键需求。拟议的项目将证明利用机器学习模型的可行性,该模型在原始蛋白质序列、诱变数据集和自然数据上进行训练。序列-功能对,无需特定于所选 POI 和应用的序列-功能数据集即可预测感兴趣的蛋白质 (POI) 的高功能变体。这种被称为零样本学习的方法迄今为止尚未应用于蛋白质工程。为了实现这一目标,将使用来自公共和私人数据库的近 50 亿个精选的未标记蛋白质序列以及一系列诱变数据集来训练大规模语言模型。然后,可以将该通用知识模型与源自自然序列(与 POI 不同)及其自然环境参数配对的特定于应用程序的顶级模型融合。假设这种训练是为了向模型灌输这样的概念:在一般意义上,在特定的环境条件下(例如高温、高盐度等),哪些序列特征可以改善蛋白质功能。为了证明这种方法的可行性和实用性,该模型将用于虚拟定向进化实验,以优化两种治疗相关的酶,优化非天然环境中的功能,并在体外评估该功能。该奖项反映了 NSF 的法定使命通过使用基金会的智力优点和更广泛的影响审查标准进行评估,并被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Surojit Biswas其他文献
Exploring uniformity and maximum entropy distribution on torus through intrinsic geometry: Application to protein-chemistry
通过内在几何探索圆环上的均匀性和最大熵分布:在蛋白质化学中的应用
- DOI:
10.15406/jbmoa.2022.10.00330 - 发表时间:
2024-05-15 - 期刊:
- 影响因子:0
- 作者:
Surojit Biswas;Buddhan;a Banerjee;a - 通讯作者:
a
Superantigen-induced apoptotic death of tumor cells is mediated by cytotoxic lymphocytes, cytokines, and nitric oxide.
超抗原诱导的肿瘤细胞凋亡是由细胞毒性淋巴细胞、细胞因子和一氧化氮介导的。
- DOI:
10.1006/bbrc.2002.6359 - 发表时间:
2002-02-01 - 期刊:
- 影响因子:3.1
- 作者:
T. Mondal;D. Bhatta;Surojit Biswas;P. Pal - 通讯作者:
P. Pal
Changepoint problem with angular data using a measure of variation based on the intrinsic geometry of torus
使用基于环面固有几何形状的变化测量的角度数据的变点问题
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Surojit Biswas;Buddhananda Banerjee;A. Laha - 通讯作者:
A. Laha
ST ] 1 M ay 2 01 9 Stochastic ordering results in parallel and series systems with Gumble distributed random variables
ST ] 1 May 2 01 9 具有 Gumble 分布随机变量的并联和串联系统中的随机排序结果
- DOI:
- 发表时间:
2024-09-14 - 期刊:
- 影响因子:0
- 作者:
Surojit Biswas;Nitin Gupta - 通讯作者:
Nitin Gupta
Tradict Enables High Fidelity Reconstruction of the Eukaryotic Transcriptome from 100 Marker Genes
Tradict 能够从 100 个标记基因高保真度重建真核转录组
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Surojit Biswas;Konstantin Kerner;P. Teixeira;J. Dangl;V. Jojic;P. Wigge - 通讯作者:
P. Wigge
Surojit Biswas的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
热带河口特有鱼类尖鳍鲤早期生活史不同阶段的栖息地利用变化及驱动机制
- 批准号:32360917
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
基于现代监测的湘西惹迷洞MIS2阶段石笋碳同位素和微量元素记录重建研究
- 批准号:42371164
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
高层钢结构建模-优化-深化的跨阶段智能设计方法
- 批准号:52308142
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
低碳环境下考虑阶段间运输混合流水车间成组调度的协同智能优化方法
- 批准号:72301026
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
马尾松和粘盖乳牛肝菌预共生阶段互作机制研究
- 批准号:32360372
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
SBIR Phase II: Long Stroke Micromachined Arrayed Cell Electrostatic Actuators for Highly Integrated Micro-Positioning
SBIR 第二阶段:用于高度集成微定位的长冲程微机械阵列单元静电执行器
- 批准号:
2151499 - 财政年份:2022
- 资助金额:
$ 25.6万 - 项目类别:
Cooperative Agreement
SBIR Phase I: A highly-scalable, rapid, in-season approach to tune a nitrogen model for accurate prediction of a corn crop’s remaining nitrogen need
SBIR 第一阶段:一种高度可扩展、快速的季节性方法,用于调整氮模型,以准确预测玉米作物的剩余氮需求
- 批准号:
2127096 - 财政年份:2022
- 资助金额:
$ 25.6万 - 项目类别:
Standard Grant
SBIR Phase II: Development of a novel, highly efficient Descemet's Membrane Endothelial Keratoplasty preparation device expands the donor pool
SBIR II 期:开发新型高效后弹力层内皮角膜移植术准备装置,扩大供体库
- 批准号:
2212687 - 财政年份:2022
- 资助金额:
$ 25.6万 - 项目类别:
Cooperative Agreement
SBIR Phase I: Low latency and ultra high quality video streaming platform for highly immersive virtual reality (VR) experiences
SBIR 第一阶段:低延迟和超高质量视频流平台,提供高度沉浸式虚拟现实 (VR) 体验
- 批准号:
2151286 - 财政年份:2022
- 资助金额:
$ 25.6万 - 项目类别:
Standard Grant
SBIR Phase I: Skin-Voltage Biometric Sensing Using Highly Conductive Fabric Electrodes on Wearable Garments
SBIR 第一阶段:在可穿戴服装上使用高导电织物电极进行皮肤电压生物识别传感
- 批准号:
2136531 - 财政年份:2021
- 资助金额:
$ 25.6万 - 项目类别:
Standard Grant