Understanding Advanced Heat and Mass Transport Control and Non-Noble Metal Catalyst Designs for Low Temperature Polyolefin Up-Cycling
了解用于低温聚烯烃升级循环的先进传热和传质控制以及非贵金属催化剂设计
基本信息
- 批准号:2051231
- 负责人:
- 金额:$ 30.16万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-15 至 2024-06-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The project will investigate inexpensive catalytic materials and new energy delivery mechanisms to efficiently transform waste plastics into valuable building-block chemicals and fuels. Fundamental insights will be obtained to develop continuous and modular chemical transformation processes that will enable local municipalities to utilize waste plastics (as well as other types of municipal waste) for economic gain. The project focuses on technologies compatible with the scale of municipal waste treatment plants, thus avoiding long-distance transport of waste material for processing in large centralized chemical processing plants. Beyond promoting U.S. competitiveness in cyclic and environmentally friendly chemical processes, the project will include education and outreach efforts to train next-generation scientists and engineers, while also increasing societal awareness of the plastics pollution problem and efforts to solve the issue.Preliminary efforts in the investigator's laboratory have determined that uncatalyzed thermal radical reaction mechanisms dramatically limit the efficiency and role of catalytic materials in the catalytic conversion of polyolefins to higher-value medium and long-chain alkanes and alkenes. Additionally, the prior work has revealed linkages between the catalysis and heat and mass transport effects, thus inhibiting the development of fundamental mechanistic insights needed for catalyst and reaction environment design. The project will investigate the design and use of advanced reactor geometries specific for highly viscous polymer melt mixing to understand and limit the effect of mass transport in the catalytic cleavage of polyolefins. A new microwave energy delivery mechanism that delivers heat energy directly to the catalyst particles will be employed to avoid or dramatically reduce the role of uncatalyzed thermal radical reaction mechanisms. The fundamental surface reaction energetics of a bifunctional catalyst that presents both acid and metallic reaction sites will be investigated such that constituent reaction kinetics for polyolefin dehydrogenation, C-C cleavage, and hydrogenation may be balanced and optimized. A mechanically and chemically-robust microwave susceptor, silicon carbide (SiC), will be used to simultaneously provide tunable solid acid reaction sites, quench thermal radicals, and convert microwave energy to localized heat energy. The SiC acid catalyst will be combined with well-defined non-noble metal intermetallic compound nanoparticle catalysts that will provide metal-like surface chemistry to achieve efficient hydrogenation. Additionally, the role of hot phonons, produced through microwave absorption by SiC, will be investigated for accelerating kinetically-difficult reaction steps. To derive clear connections between bulk and surface catalysis, the catalysts will be investigated using ex- and in-situ x-ray diffraction and high-resolution energy-dispersive x-ray, x-ray photoelectron, and high-sensitivity low-energy ion scattering spectroscopies. Utilizing a suite of reaction conditions that provide a range of heat and mass transport environments, clear insights into the role of uncatalyzed reaction mechanisms, intermediate chemical potential, and composition polarization near the catalyst surface will be developed. The role of chain dynamics and branch points in the catalytic cleavage mechanism will also be determined such that a more robust and general catalytic process may be developed to operate on practical mixed polyolefin waste. The role of water content in motivating optimal catalyst formulations will also be determined to ensure the application of the science developed to real-world polyolefin up-cycling efforts. Beyond polyolefin up-cycling, this project will produce transferable understanding associated with heat and mass transport and reactor design that may greatly improve efforts to catalytically up-cycle recalcitrant, solid, or highly viscous materials. The educational component will enhance the chemical engineering and materials science programs of the University of Tennessee, Knoxville, and raise awareness of the plastics pollution problem in the local community.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将研究廉价的催化材料和新的能源输送机制,以有效地将废塑料转化为有价值的化学物质和燃料。 将获得开发连续和模块化化学转化工艺的基本见解,使当地市政当局能够利用废塑料(以及其他类型的城市废物)获得经济收益。该项目重点采用与城市垃圾处理厂规模相适应的技术,从而避免了将废料长途运输到大型集中化工厂进行处理。 除了提升美国在循环和环保化学工艺方面的竞争力外,该项目还将包括培训下一代科学家和工程师的教育和外展工作,同时提高社会对塑料污染问题的认识以及解决该问题的努力。研究人员的实验室已经确定,非催化热自由基反应机制极大地限制了催化材料在聚烯烃催化转化为更高价值的中链和长链烷烃和烯烃中的效率和作用。此外,先前的工作揭示了催化与热量和质量传递效应之间的联系,从而抑制了催化剂和反应环境设计所需的基本机制见解的发展。该项目将研究专门用于高粘度聚合物熔体混合的先进反应器几何形状的设计和使用,以了解和限制聚烯烃催化裂解中传质的影响。将采用一种新的微波能量传递机制,将热能直接传递到催化剂颗粒,以避免或显着减少非催化热自由基反应机制的作用。 将研究具有酸和金属反应位点的双功能催化剂的基本表面反应能量,以便可以平衡和优化聚烯烃脱氢、C-C裂解和氢化的组成反应动力学。机械和化学性能稳定的微波感受体碳化硅 (SiC) 将用于同时提供可调的固体酸反应位点、淬灭热自由基并将微波能转换为局部热能。 SiC酸催化剂将与明确的非贵金属金属间化合物纳米粒子催化剂相结合,提供类似金属的表面化学,以实现高效的加氢。此外,还将研究通过 SiC 吸收微波产生的热声子的作用,以加速动力学上困难的反应步骤。为了明确本体催化和表面催化之间的联系,将使用原位和原位 X 射线衍射以及高分辨率能量色散 X 射线、X 射线光电子和高灵敏度低能离子对催化剂进行研究散射光谱。利用一系列提供一系列热和质量传输环境的反应条件,将清楚地了解非催化反应机制、中间化学势和催化剂表面附近的成分极化的作用。催化裂解机制中链动力学和支化点的作用也将被确定,以便可以开发出更稳健和通用的催化过程来对实际的混合聚烯烃废物进行操作。水含量在促进最佳催化剂配方中的作用也将被确定,以确保所开发的科学应用于现实世界的聚烯烃升级循环工作。除了聚烯烃升级循环之外,该项目还将产生与热和质量传输以及反应器设计相关的可转移的理解,这可能会大大改善催化升级循环顽固、固体或高粘度材料的努力。该教育部分将加强田纳西大学诺克斯维尔分校的化学工程和材料科学项目,并提高当地社区对塑料污染问题的认识。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Siris Laursen其他文献
Geometric and electronic characteristics of active sites on TiO2-supported Au nano-catalysts: insights from first principles.
TiO2 负载的金纳米催化剂上活性位点的几何和电子特征:来自第一原理的见解。
- DOI:
10.1039/b912641d - 发表时间:
2009-11-17 - 期刊:
- 影响因子:0
- 作者:
Siris Laursen;S. Linic - 通讯作者:
S. Linic
Selective and Stable Non-Noble-Metal Intermetallic Compound Catalyst for the Direct Dehydrogenation of Propane to Propylene.
用于丙烷直接脱氢制丙烯的选择性且稳定的非贵金属金属间化合物催化剂。
- DOI:
10.1021/jacs.8b05060 - 发表时间:
2018-10-16 - 期刊:
- 影响因子:15
- 作者:
Yang He;Yuanjun Song;D. Cullen;Siris Laursen - 通讯作者:
Siris Laursen
The Origin of the Special Surface and Catalytic Chemistry of Ga-Rich Ni3Ga in the Direct Dehydrogenation of Ethane
富Ga Ni3Ga的特殊表面及催化乙烷直接脱氢化学的起源
- DOI:
10.1021/acscatal.9b03402 - 发表时间:
2019-10-14 - 期刊:
- 影响因子:12.9
- 作者:
Yang He;Yuanjun Song;Siris Laursen - 通讯作者:
Siris Laursen
The Control of Selectivity through a New Hydrogen-Transfer Mechanism in Photocatalytic Reduction Reactions: Electronically-Relaxed Neutral H and the Role of Electron-Phonon Coupling.
通过光催化还原反应中新型氢转移机制控制选择性:电子弛豫中性 H 和电子声子耦合的作用。
- DOI:
10.1021/acs.jpclett.9b01614 - 发表时间:
2019-07-29 - 期刊:
- 影响因子:0
- 作者:
Samiksha Poudyal;M. Parker;Siris Laursen - 通讯作者:
Siris Laursen
Financial Support
经济支持
- DOI:
10.1093/annonc/7.suppl_1.8-b - 发表时间:
1995-09-14 - 期刊:
- 影响因子:3.5
- 作者:
Siris Laursen - 通讯作者:
Siris Laursen
Siris Laursen的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Siris Laursen', 18)}}的其他基金
CAS: Quantifying the Systematic Catalytic Surface Chemistry of Non-Noble Metal Intermetallic Compounds to Achieve Diol and Olefin Production in Polyol Deoxygenation Reactions
CAS:量化非贵金属金属间化合物的系统催化表面化学,以实现多元醇脱氧反应中二醇和烯烃的生产
- 批准号:
2155037 - 财政年份:2022
- 资助金额:
$ 30.16万 - 项目类别:
Standard Grant
CAREER: Nanoparticle Non-Noble Metal Intermetallic Compounds as Tunable Catalysts for Selective Hydrogenation Reactions
职业:纳米颗粒非贵金属金属间化合物作为选择性加氢反应的可调催化剂
- 批准号:
1752063 - 财政年份:2018
- 资助金额:
$ 30.16万 - 项目类别:
Standard Grant
SusChEM: Mechanistic Studies of Photocatalytic Water-Splitting and CO2Reduction: The control of surface chemical reactivity and its effect on product distribution
SusChEM:光催化水分解和二氧化碳还原的机理研究:表面化学反应性的控制及其对产物分布的影响
- 批准号:
1465137 - 财政年份:2015
- 资助金额:
$ 30.16万 - 项目类别:
Standard Grant
相似国自然基金
基于区域分解法的先进封装电-热多物理场仿真与应用
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:
超临界二氧化碳作为先进核能系统工质的热工流体力学关键基础问题研究
- 批准号:U1867218
- 批准年份:2018
- 资助金额:270.0 万元
- 项目类别:联合基金项目
基于热经济学的富氧燃烧CO2捕获过程先进控制结构及其性能优化研究
- 批准号:21808050
- 批准年份:2018
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
基于先进㶲分析的分壁式萃取精馏塔热能分布机制及热耦合变化规律研究
- 批准号:21878028
- 批准年份:2018
- 资助金额:65.0 万元
- 项目类别:面上项目
集成DOE的激光熔覆工艺及先进镍基高温合金熔覆质量控制机理研究
- 批准号:51675303
- 批准年份:2016
- 资助金额:62.0 万元
- 项目类别:面上项目
相似海外基金
Project 1: Targeting HSPA Proteins in Advanced and Recurrent Endometrial Cancer Therapy
项目 1:针对晚期和复发性子宫内膜癌治疗中的 HSPA 蛋白
- 批准号:
10711636 - 财政年份:2023
- 资助金额:
$ 30.16万 - 项目类别:
The impact of alcohol-induced ATF6-mediated ER stress and Golgi disorganization on pro-metastatic glycosylation of integrins in prostate cancer
酒精诱导的 ATF6 介导的 ER 应激和高尔基体解体对前列腺癌整合素促转移糖基化的影响
- 批准号:
10826211 - 财政年份:2023
- 资助金额:
$ 30.16万 - 项目类别:
Micro-FloTec: Microscale enabled advanced flow and heat transfer technologies featuring high performance and low power consumption
Micro-FloTec:Microscale 支持先进的流动和传热技术,具有高性能和低功耗的特点
- 批准号:
EP/X038319/1 - 财政年份:2023
- 资助金额:
$ 30.16万 - 项目类别:
Research Grant
Microscale enabled advanced flow and heat transfer technologies featuring high performance and low power consumption; Acronym: Micro-FloTec
微尺度实现了高性能、低功耗的先进流动和传热技术;
- 批准号:
EP/Y004973/1 - 财政年份:2023
- 资助金额:
$ 30.16万 - 项目类别:
Research Grant
Targeting PLK1 signaling for the treatment of fibrolamellar carcinoma
靶向 PLK1 信号传导治疗纤维板层癌
- 批准号:
10742683 - 财政年份:2023
- 资助金额:
$ 30.16万 - 项目类别: