Analysis, Simulation, and Applications of Stochastic Systems

随机系统的分析、仿真和应用

基本信息

  • 批准号:
    2114649
  • 负责人:
  • 金额:
    $ 52万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-01-15 至 2023-01-31
  • 项目状态:
    已结题

项目摘要

Stochastic systems are systems in which random disturbances play a significant role. Stemming from emerging and existing applications in networked systems, wireless communications, signal processing, economics, and ecology, this project encompasses the study of dynamically evolving stochastic systems with uncertainties, switching among different configurations, and complex structures. The networked systems of interest include financial, communication, social, biological, and ecological networks. The work will be devoted to learning the intrinsic properties of stochastic network systems, developing mathematical models and novel mathematical methods for analyzing such systems, and designing efficient computational schemes for optimization and control of such systems to meet desired goals. The results of the research will be useful for applications to economics, nonlinear system identification and estimation, un-manned vehicles and other multi-agent systems, biodiversity in ecological systems, and social networks. This projects will involve undergraduate and graduate students and will integrate the research with teaching and student training. This work will contribute jointly to the further development of mathematical theory, computational methods and applications, and the improvement of mathematics education. Motivated by a wide variety of applications, this project will study the following research topics. (1)Stochastic models with random switching will be developed and analyzed. Novel features of the systems include (i) past-dependent switching having a countable state space, and (ii) switching jump diffusions with non-local operators, finite switching set, and sigma finite jump measures. Criteria for recurrence, positive recurrence, and ergodicity will be obtained. (2) Kolmogorov-type systems under white noise perturbations, where the diffusions are degenerate, will be investigated. Applications to control dependent environmental protection zones, infectious disease and ecology will be studied. (3) New algorithms for switching diffusions and stochastic approximation will be developed and their rates of convergence will be studied. (i) For Milstein-type algorithms for solutions of switching diffusions, it will be shown that the algorithms preserve order 1 convergence rates as their diffusion counterpart. (ii) Motivated by applications to multi-agent systems, consensus, and swarming, the novelties of the stochastic approximation algorithms include the inclusion of state-dependent switching, state-dependent observation noise, and general time-dependent nonlinear functions. (4) Precise error estimates for identification of Hammerstein nonlinear systems with quantized observations will be obtained. It will be proved that the estimates escape from a small neighborhood of the true parameter with a probability that is exponentially small. (5) Accurate error bounds for approximation schemes of duplication-deletion random networks in the sense of strong approximation will be obtained. This will have impact on the study of random dynamic graphs and applications to social networks. Extensive numerical experiments and simulations will be performed to complement the analysis and algorithm design. The projects will involve the participation of undergraduate and graduate students.
随机系统是随机干扰起着重要作用的系统。该项目源于网络系统,无线通信,信号处理,经济学和生态学中的新兴和现有应用,该项目涵盖了动态发展具有不确定性的动态发展随机系统的研究,在不同的配置之间切换以及复杂的结构。感兴趣的网络系统包括财务,沟通,社会,生物学和生态网络。这项工作将致力于学习随机网络系统的内在属性,开发数学模型和新的数学方法,用于分析此类系统,并设计有效的计算方案,以优化和控制此类系统以实现所需的目标。该研究的结果将对用于经济学,非线性系统识别和估计,无人驾驶汽车以及其他多机构系统,生态系统中的生物多样性以及社交网络的应用很有用。该项目将涉及本科生和研究生,并将研究与教学和学生培训相结合。这项工作将共同有助于进一步发展数学理论,计算方法和应用以及进步数学教育。受各种应用程序的启发,该项目将研究以下研究主题。 (1)将开发和分析具有随机切换的随机模型。系统的新功能包括(i)具有可数的状态空间的过去依赖性切换,以及(ii)与非本地运算符的开关跳转扩散,有限的开关集和Sigma有限的跳跃措施。将获得复发,正复发和终身制的标准。 (2)将研究散射散布的白噪声扰动下的kolmogorov型系统。将研究控制依赖环境保护区,传染病和生态学的应用。 (3)将开发用于开关扩散和随机近似的新算法,并将研究其收敛速率。 (i)对于米尔斯坦型算法,用于开关扩散的溶液,将表明该算法将命令1收敛速率保留为扩散率。 (ii)由应用于多代理系统,共识和蜂拥而至的动机,随机近似算法的新颖性包括包括国家依赖性切换,国家依赖性观察噪声以及一般时间依赖时间的非线性函数。 (4)将获得具有量化观察结果的Hammerstein非线性系统鉴定的精确误差估计。可以证明,估计值从真实参数的一个小邻居中逸出,概率呈指数较小。 (5)将在强近似意义上获得重复删除随机网络的近似值方案的准确误差界。这将影响对社交网络的随机动态图和应用程序的研究。将进行广泛的数值实验和模拟,以补充分析和算法设计。这些项目将涉及本科生和研究生的参与。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Stochastic functional Kolmogorov equations, I: Persistence
Fast-slow-coupled stochastic functional differential equations
快慢耦合随机泛函微分方程
  • DOI:
    10.1016/j.jde.2022.03.030
  • 发表时间:
    2022-06
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Fuke Wu;George Yin
  • 通讯作者:
    George Yin
Stability in distribution and stabilization of switching jump diffusions
Stochastic functional Kolmogorov equations II: Extinction
  • DOI:
    10.1016/j.jde.2021.05.043
  • 发表时间:
    2021-05
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    D. Nguyen;N. Nguyen;G. Yin
  • 通讯作者:
    D. Nguyen;N. Nguyen;G. Yin
Stochastic Lotka-Volterra competitive reaction-diffusion systems perturbed by space-time white noise: Modeling and analysis
  • DOI:
    10.1016/j.jde.2021.02.023
  • 发表时间:
    2020-12
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    N. Nguyen;G. Yin
  • 通讯作者:
    N. Nguyen;G. Yin
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gang George Yin其他文献

Gang George Yin的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gang George Yin', 18)}}的其他基金

Collaborative Research: AMPS Stochastic Algorithms for Early Detection and Risk Prediction of Hidden Contingencies in Modern Power Systems
合作研究:用于现代电力系统中隐藏突发事件的早期检测和风险预测的 AMPS 随机算法
  • 批准号:
    2229108
  • 财政年份:
    2022
  • 资助金额:
    $ 52万
  • 项目类别:
    Standard Grant
Modeling, Analysis, Optimization, Computation, and Applications of Stochastic Systems
随机系统的建模、分析、优化、计算和应用
  • 批准号:
    2204240
  • 财政年份:
    2022
  • 资助金额:
    $ 52万
  • 项目类别:
    Continuing Grant
Analysis, Simulation, and Applications of Stochastic Systems
随机系统的分析、仿真和应用
  • 批准号:
    1710827
  • 财政年份:
    2017
  • 资助金额:
    $ 52万
  • 项目类别:
    Continuing Grant
Analysis, Algorithm Design, and Computation for Stochastic Systems and Optimization
随机系统和优化的分析、算法设计和计算
  • 批准号:
    1207667
  • 财政年份:
    2012
  • 资助金额:
    $ 52万
  • 项目类别:
    Continuing Grant
Research on Stochastic Systems and Optimization: Analysis, Algorithms, and Computations
随机系统和优化研究:分析、算法和计算
  • 批准号:
    0907753
  • 财政年份:
    2009
  • 资助金额:
    $ 52万
  • 项目类别:
    Standard Grant
Stochastic Optimization: Approximation Algorithms and Asymptotic Analysis
随机优化:近似算法和渐近分析
  • 批准号:
    0603287
  • 财政年份:
    2006
  • 资助金额:
    $ 52万
  • 项目类别:
    Standard Grant
Recursive Algorithms and Regime Switching Models for Stochastic Optimization
随机优化的递归算法和机制切换模型
  • 批准号:
    0304928
  • 财政年份:
    2003
  • 资助金额:
    $ 52万
  • 项目类别:
    Standard Grant
Optimization for Systems Under Uncertainty: Modeling, Asymptotic Analysis, and Recursive Algorithms
不确定性下的系统优化:建模、渐近分析和递归算法
  • 批准号:
    9877090
  • 财政年份:
    1999
  • 资助金额:
    $ 52万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Analysis and Numerical Methods in Stochastic Optimization
数学科学:随机优化中的分析和数值方法
  • 批准号:
    9529738
  • 财政年份:
    1996
  • 资助金额:
    $ 52万
  • 项目类别:
    Standard Grant
Mathematical Sciences: Studies in Stochastic Optimization
数学科学:随机优化研究
  • 批准号:
    9224372
  • 财政年份:
    1993
  • 资助金额:
    $ 52万
  • 项目类别:
    Standard Grant

相似国自然基金

西北不同生态系统下气溶胶对边界层辐射平衡的影响及模拟研究
  • 批准号:
    42375085
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
辽西北半干旱区秸秆覆盖种植玉米水分运移与生长模拟研究
  • 批准号:
    32301689
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于观测和CMIP6/LUMIP试验的毁林/造林生物物理效应模拟评估和约束研究
  • 批准号:
    42375115
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
组织粘附张力模拟水凝胶促进糖尿病创面修复的应用及机制研究
  • 批准号:
    82302666
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
气候模式中海表温度日变化振幅对ENSO模拟的影响研究
  • 批准号:
    42376033
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Probing Mechanisms of Polycystin-1 Regulation Using Peptide Modulators Designed by Sequence- and Structure-Based Learning
使用基于序列和结构的学习设计的肽调制器探索多囊蛋白-1 调节机制
  • 批准号:
    10917464
  • 财政年份:
    2023
  • 资助金额:
    $ 52万
  • 项目类别:
Sieve based full likelihood approach for the Cox proportional hazards model with applications to immunotherapies trials
基于筛法的 Cox 比例风险模型的完全似然法及其在免疫治疗试验中的应用
  • 批准号:
    10577723
  • 财政年份:
    2023
  • 资助金额:
    $ 52万
  • 项目类别:
Elements: Streaming Molecular Dynamics Simulation Trajectories for Direct Analysis: Applications to Sub-Picosecond Dynamics in Microsecond Simulations
元素:用于直接分析的流式分子动力学模拟轨迹:微秒模拟中亚皮秒动力学的应用
  • 批准号:
    2311372
  • 财政年份:
    2023
  • 资助金额:
    $ 52万
  • 项目类别:
    Standard Grant
Quantitative Modeling Software with Applications to Medical Decision Making
定量建模软件在医疗决策中的应用
  • 批准号:
    10823037
  • 财政年份:
    2023
  • 资助金额:
    $ 52万
  • 项目类别:
Development and Application of T1rho Dispersion Imaging of Aging Muscle
衰老肌肉T1rho色散成像的开发与应用
  • 批准号:
    10428316
  • 财政年份:
    2022
  • 资助金额:
    $ 52万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了