CAREER: Orchestrating Edge Infrastructures and Mobile Devices under Uncertainty to Provision Edge AI as a Service

职业:在不确定性下协调边缘基础设施和移动设备以提供边缘人工智能即服务

基本信息

  • 批准号:
    2047719
  • 负责人:
  • 金额:
    $ 51.08万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-01 至 2026-06-30
  • 项目状态:
    未结题

项目摘要

Artificial Intelligence (AI) is often trained by data first, and then used to perform inference upon data which may have never been seen. Today's AI services are mostly trained in remote data centers and accessed via the Internet. However, increasingly, as large volumes of training data are generated by end users and inference tasks are also performed on premises, AI needs to be moved to the network edge in closer proximity to users. The objective of this project is to address this emerging paradigm shift by orchestrating the distributed computing and networking infrastructures and provisioning AI as a service from the network edge to serve large numbers of users at different locations.This project will define the optimization problems, design the control algorithms, and develop the deployable implementations for operating AI as a service across cloud-edge networks and mobile devices. Centered on system dynamics and uncertainty, the project consists of multiple research thrusts. First, the project will optimize the training and the inference of AI through making smart decisions on participant selection, model placement, aggregation control, and request dispatching, and will produce time-based algorithms running in an online manner with provable performance guarantees. Second, the project will investigate the interactions among different parties in the AI service ecosystem from an economics perspective, and will devise incentive mechanisms towards superior resource utilization and optimal social welfare with desired economic properties. Third, the project will conduct a combination of simulations, measurements, and implementations with real-world data traces and realistic experimental settings to comprehensively evaluate and validate the models, algorithms, and systems.This project will impact the industry by providing telecom carriers, network operators, and service providers with a critical set of techniques to enable them to provision and operate dedicated or value-added edge-AI services upon distributed infrastructures. Further, the project will devise novel theories and algorithms based on the mathematics of optimization, control, learning, and mechanism design, and could be of independent interest and have extended applications to problems in other related fields that also face dynamic and uncertain inputs. Finally, besides contributing to undergraduate and graduate course materials, the project will execute the education plan that focuses on facilitating K-12 education via training teachers and also equipping students with AI knowledge and experiences in an ethical manner.The deliverables of this project, which include but are not limited to papers, data, and codes, will be made publicly available at the following website: https://github.com/ai-at-edge. This website will be updated in time for the duration of this project and maintained online thereafter.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人工智能(AI)通常首先通过数据进行训练,然后用于对可能从未见过的数据进行推理。如今的人工智能服务大多在远程数据中心进行训练并通过互联网访问。然而,随着最终用户生成大量训练数据并且推理任务也在本地执行,人工智能需要逐渐转移到更靠近用户的网络边缘。该项目的目标是通过协调分布式计算和网络基础设施,并从网络边缘将人工智能作为服务提供,为不同位置的大量用户提供服务,从而解决这一新兴范式转变。该项目将定义优化问题,设计控制算法,并开发可部署的实现,以将人工智能作为跨云边缘网络和移动设备的服务进行操作。该项目以系统动力学和不确定性为中心,包含多个研究重点。首先,该项目将通过在参与者选择、模型放置、聚合控制和请求调度方面做出智能决策来优化人工智能的训练和推理,并将产生以在线方式运行且具有可证明性能保证的基于时间的算法。其次,该项目将从经济学角度研究人工智能服务生态系统中各方之间的相互作用,并设计激励机制,以实现具有理想经济属性的优质资源利用和最优社会福利。第三,该项目将结合真实世界的数据轨迹和真实的实验设置进行模拟、测量和实现,以全面评估和验证模型、算法和系统。该项目将通过为电信运营商、网络运营商和服务提供商拥有一套关键技术,使他们能够在分布式基础设施上提供和运营专用或增值边缘人工智能服务。此外,该项目将设计基于优化、控制、学习和机制设计数学的新颖理论和算法,并且可以具有独立的兴趣,并可扩展到其他也面临动态和不确定输入的相关领域的问题。最后,除了提供本科生和研究生课程材料外,该项目还将执行教育计划,重点是通过培训教师来促进 K-12 教育,并以道德的方式为学生提供人工智能知识和经验。该项目的可交付成果包括包括但不限于论文、数据和代码,将在以下网站公开:https://github.com/ai-at-edge。该网站将在该项目期间及时更新,并在此后在线维护。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
EAVS: Edge-assisted Adaptive Video Streaming with Fine-grained Serverless Pipelines
EAVS:具有细粒度无服务器管道的边缘辅助自适应视频流
Toward Sustainable AI: Federated Learning Demand Response in Cloud-Edge Systems via Auctions
迈向可持续人工智能:通过拍卖实现云边缘系统中的联邦学习需求响应
AI in 5G: The Case of Online Distributed Transfer Learning over Edge Networks
5G 中的人工智能:边缘网络上的在线分布式迁移学习案例
Power-of-2-arms for bandit learning with switching costs
用于强盗学习的 2 臂力量(Power-of-2-arms),具有转换成本
Orchestrating Blockchain with Decentralized Federated Learning in Edge Networks
在边缘网络中通过去中心化联合学习来协调区块链
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lei Jiao其他文献

Online scheduling of heterogeneous distributed machine learning jobs
异构分布式机器学习作业在线调度
Drop Clause: Enhancing Performance, Interpretability and Robustness of the Tsetlin Machine
删除子句:增强 Tsetlin 机器的性能、可解释性和稳健性
  • DOI:
  • 发表时间:
    2021-05-30
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jivitesh Sharma;Rohan Kumar Yadav;Ole;Lei Jiao
  • 通讯作者:
    Lei Jiao
Vascular smooth muscle cell remodelling in elastase-induced aortic aneurysm
弹性蛋白酶诱导的主动脉瘤中血管平滑肌细胞的重塑
  • DOI:
    10.1080/ac.65.5.2056235
  • 发表时间:
    2010-10-01
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Lei Jiao;Zheng Xu;F. Xu;Shi;Kaiyun Wu
  • 通讯作者:
    Kaiyun Wu
Boundedness for the general semilinear Duffing equations via the twist theorem
通过扭曲定理的一般半线性 Duffing 方程的有界性
  • DOI:
    10.1016/j.jde.2011.09.019
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    2.4
  • 作者:
    Lei Jiao;Da;Da;Yiqian Wang
  • 通讯作者:
    Yiqian Wang
Investigation of the Mixing Rate and Channel Volume Efficiency of a Self-Driven Rotary Energy Recovery Device in the Reverse Osmosis System
反渗透系统中自驱动旋转能量回收装置的混合速率和通道容积效率的研究
  • DOI:
    10.1021/acs.iecr.3c02178
  • 发表时间:
    2023-07-27
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tianzhuang Ye;Jiancong Lu;Yunfei Qu;Lida Meng;Jianyu Li;Xiongjie Yang;Lei Jiao
  • 通讯作者:
    Lei Jiao

Lei Jiao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lei Jiao', 18)}}的其他基金

Collaborative Research: CNS Core: Small: Edge AI with Streaming Data: Algorithmic Foundations for Online Learning and Control
合作研究:中枢神经系统核心:小型:具有流数据的边缘人工智能:在线学习和控制的算法基础
  • 批准号:
    2225949
  • 财政年份:
    2022
  • 资助金额:
    $ 51.08万
  • 项目类别:
    Standard Grant

相似国自然基金

数字孪生场景语义视觉变量智能优选与自动编排组合方法
  • 批准号:
    42361072
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目
多元异构计算系统下Serverless工作流编排技术研究
  • 批准号:
    62372322
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
数字时代全球创新资源编排与瓶颈突破的机理研究:网络、生态系统及其整合视角
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
数字化时代组织多水平志愿行为与创新绩效的关系:资源编排视角的动态影响效应研究
  • 批准号:
    72272053
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目
平台化企业数字能力驱动内部创业成功的机制研究:基于三维赋能和双重资源编排的整合视角
  • 批准号:
    72272057
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目

相似海外基金

CAREER: Dissecting the cellular pathways and signaling networks orchestrating plant defense responses and their interplay with bacterial virulence factors
职业:剖析细胞通路和信号网络,协调植物防御反应及其与细菌毒力因子的相互作用
  • 批准号:
    2332080
  • 财政年份:
    2023
  • 资助金额:
    $ 51.08万
  • 项目类别:
    Continuing Grant
EAGER: Orchestrating Productive Collaboration Among Students in Mathematics with Multimodal Machine Learning
EAGER:通过多模态机器学习协调数学学生之间的富有成效的协作
  • 批准号:
    2331379
  • 财政年份:
    2023
  • 资助金额:
    $ 51.08万
  • 项目类别:
    Standard Grant
Collaborative Research: CCSS: Hierarchical Federated Learning over Highly-Dense and Overlapping NextG Wireless Deployments: Orchestrating Resources for Performance
协作研究:CCSS:高密度和重叠的 NextG 无线部署的分层联合学习:编排资源以提高性能
  • 批准号:
    2319780
  • 财政年份:
    2023
  • 资助金额:
    $ 51.08万
  • 项目类别:
    Standard Grant
Collaborative Research: CCSS: Hierarchical Federated Learning over Highly-Dense and Overlapping NextG Wireless Deployments: Orchestrating Resources for Performance
协作研究:CCSS:高密度和重叠的 NextG 无线部署的分层联合学习:编排资源以提高性能
  • 批准号:
    2319781
  • 财政年份:
    2023
  • 资助金额:
    $ 51.08万
  • 项目类别:
    Standard Grant
Unravel a novel metabolic pathway orchestrating prostate cancer progression and therapeutic resistance
揭示协调前列腺癌进展和治疗耐药的新代谢途径
  • 批准号:
    10374340
  • 财政年份:
    2022
  • 资助金额:
    $ 51.08万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了