CAREER: Theory and Algorithms for Efficient Control of Wireless Networks with Jointly Optimized Performance: High Throughput, Low Delay, and Low Complexity
职业:具有联合优化性能的无线网络高效控制的理论和算法:高吞吐量、低延迟和低复杂性
基本信息
- 批准号:2112694
- 负责人:
- 金额:$ 49.68万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-10-01 至 2023-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
With the advent of smart devices and the Internet of things, wireless technology has spawned a plethora of services that span business, science and engineering, entertainment, safety and security, health monitoring, and cover a large portion of our social interactions. Due to the prevalence of these new services, today's wireless networks are witnessing not only an unprecedented growth in the volume of traffic, but also a significant change in the types of traffic (e.g., a much higher percentage of voice/video traffic with more stringent delay requirements). These new trends require next-generation wireless networks to provide not only high data rates (tens of gigabits per second), but also ultra-low latencies (sub-millisecond). Moreover, as wireless networks grow and support an increasingly large number of users, network control algorithms must also incur low complexity in order to be implemented in practice. However, the question of how to simultaneously achieve high throughput, low delay and low complexity remains largely open. Addressing this major research challenge is a main goal of this project. Not only is this research expected to substantially advance our understanding of designing efficient control algorithms for wireless networks with jointly optimized performance, but it would also expand/create the much-needed theoretical foundations for developing simple and practical protocols to optimize the key performance metrics needed in the design of next-generation wireless networks. This research will also be closely integrated with a comprehensive educational plan, which is focused on providing research experiences to undergraduate and K-12 students, recruiting and training underrepresented students, and engaging in curriculum development activities. The goal of this project is to create new theoretical foundations for designing provably efficient network control algorithms that perform well in all three dimensions of throughput, delay, and complexity. Specifically, this research will be carried out around three main thrusts: (i) it focuses on intra-cell control for a multi-channel cellular network, and aims to build a theoretical framework for designing low-complexity scheduling algorithms with provably guaranteed optimal throughput and optimal (or near-optimal) large-deviations delay rate-function; (ii) it considers a more challenging setting of network-wide control for larger systems (e.g., a dense multi-cell system or an ad hoc wireless network), and aims to develop a new node-based approach for designing efficient scheduling algorithms with provable throughput and evacuation time performance; and (iii) it considers distributed network-side control and aims to design low-complexity algorithms that achieve high throughput and low delay.
随着智能设备和物联网的出现,无线技术催生了众多的服务,这些服务涵盖了商业,科学和工程,娱乐,安全和保障,健康监控,并涵盖了我们的大部分社交互动。由于这些新服务的盛行,当今的无线网络不仅目睹了流量量的前所未有的增长,而且还在交通类型的重大变化(例如,语音/视频流量的更高百分比具有更严格的延迟要求)。这些新趋势需要下一代无线网络,不仅提供高数据速率(每秒数十千兆位),还提供超低潜伏期(子毫秒)。此外,随着无线网络的增长并支持越来越多的用户,网络控制算法还必须产生低复杂性才能实践实现。但是,如何同时实现高吞吐量,低延迟和低复杂性的问题仍然很大程度上开放。应对这一重大研究挑战是该项目的主要目标。这项研究不仅预计我们对具有共同优化性能的无线网络的设计有效的控制算法的理解不仅可以扩展/创建急需的理论基础,以开发简单且实用的协议,以优化下一代无线网络设计中所需的关键性能指标。这项研究还将与一项全面的教育计划紧密融合,该计划的重点是为本科生和K-12学生提供研究经验,招募和培训代表性不足的学生,并从事课程开发活动。该项目的目的是创建新的理论基础,用于设计可证明有效的网络控制算法,这些算法在吞吐量,延迟和复杂性的所有三个维度上都表现良好。具体来说,这项研究将在三个主要推力下进行:(i)它的重点是用于多渠道蜂窝网络的内部电池控制,并旨在建立一个理论框架,用于设计低复杂性调度算法,并具有可证明具有最佳的最佳吞吐量和最佳(或接近能力)的大速率延迟速率延迟速率延迟速率; (ii)它考虑了较大系统(例如,密集的多单元系统或临时无线网络)的更具挑战性的网络控制设置,并旨在开发一种基于节点的新方法,用于设计有效的计划算法,并具有可证明的吞吐量和疏散时间性能; (iii)它考虑了分布式网络侧控制,并旨在设计可实现高吞吐量和低延迟的低复杂性算法。
项目成果
期刊论文数量(34)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Enabling Fair Spectrum Sharing between Wi-Fi and LTE-Unlicensed
- DOI:10.1109/icc.2018.8422855
- 发表时间:2018-05
- 期刊:
- 影响因子:0
- 作者:Kuo Chi;Longfei Wu;Xiaojiang Du;Guisheng Yin;Jie Wu;Bo Ji;X. Hei
- 通讯作者:Kuo Chi;Longfei Wu;Xiaojiang Du;Guisheng Yin;Jie Wu;Bo Ji;X. Hei
Joint Placement and Allocation of VNF Nodes With Budget and Capacity Constraints
- DOI:10.1109/tnet.2021.3058378
- 发表时间:2019-01
- 期刊:
- 影响因子:0
- 作者:G. Sallam;Bo Ji
- 通讯作者:G. Sallam;Bo Ji
On scheduling ring-all-reduce learning jobs in multi-tenant GPU clusters with communication contention
- DOI:10.1145/3492866.3549716
- 发表时间:2022-07
- 期刊:
- 影响因子:0
- 作者:Menglu Yu;Bo Ji;Hridesh Rajan;Jia Liu
- 通讯作者:Menglu Yu;Bo Ji;Hridesh Rajan;Jia Liu
Towards the Tradeoff Between Service Performance and Information Freshness
- DOI:10.1109/icc.2019.8761529
- 发表时间:2019-01
- 期刊:
- 影响因子:0
- 作者:Zhongdong Liu;Bo Ji
- 通讯作者:Zhongdong Liu;Bo Ji
Providing wireless coverage to high-rise buildings using UAVs
- DOI:10.1109/icc.2017.7997403
- 发表时间:2017-05
- 期刊:
- 影响因子:0
- 作者:Hazim Shakhatreh;Abdallah Khreishah;Bo Ji
- 通讯作者:Hazim Shakhatreh;Abdallah Khreishah;Bo Ji
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Bo Ji其他文献
Learning-augmented Online Minimization of Age of Information and Transmission Costs
学习增强型在线最小化信息时代和传输成本
- DOI:
10.48550/arxiv.2403.02573 - 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Zhongdong Liu;Keyuan Zhang;Bin Li;Yin Sun;Y. T. Hou;Bo Ji - 通讯作者:
Bo Ji
Serrated flow in 11Cr ferritic/martensitic steel
11Cr 铁素体/马氏体钢中的锯齿状流动
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Yinzhong Shen;Bo Ji;Shengzhi Li;Aidang Shan - 通讯作者:
Aidang Shan
Comparison of Protective Effects of Electroacupuncture at ST 36 and LU 5 on Pulmonary and Hypothalamic Pituitary Adrenal Axis Changes in Perinatal Nicotine-Exposed Rats
电针ST 36与LU 5对围生期尼古丁暴露大鼠肺及下丘脑垂体肾上腺轴变化的保护作用比较
- DOI:
10.1155/2020/3901528 - 发表时间:
2020-01 - 期刊:
- 影响因子:0
- 作者:
Yawen Lu;Bo Ji;Guozhen Zhao;Jian Dai;Reiko Sakurai;Yitian Liu;Qiujie Mou;Yana Xie;Qin Zhang;Shuang Xu;Virender Kumar Rehan - 通讯作者:
Virender Kumar Rehan
Minute ventilation measurement using Plethysmographic Imaging and lighting parameters
使用体积描记成像和照明参数进行每分钟通气量测量
- DOI:
- 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Daniel Minati;Ludwik Sams;Karen Li;Bo Ji;K. Vardhan - 通讯作者:
K. Vardhan
A moving weak and small target detection algorithm for multispectral image sequences
多光谱图像序列的运动弱小目标检测算法
- DOI:
10.1117/12.2608019 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
Zheng Zhang;Xuya Zhang;Yifan Shen;Yangyan Ou;Bo Ji;Jia;Jing Hu - 通讯作者:
Jing Hu
Bo Ji的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Bo Ji', 18)}}的其他基金
Collaborative Research: NeTS: Medium: Black-box Optimization of White-box Networks: Online Learning for Autonomous Resource Management in NextG Wireless Networks
合作研究:NeTS:中:白盒网络的黑盒优化:下一代无线网络中自主资源管理的在线学习
- 批准号:
2312833 - 财政年份:2023
- 资助金额:
$ 49.68万 - 项目类别:
Standard Grant
Collaborative Research: CNS Core: Medium: Information Freshness in Scalable and Energy Constrained Machine to Machine Wireless Networks
合作研究:CNS 核心:中:可扩展且能量受限的机器对机器无线网络中的信息新鲜度
- 批准号:
2106427 - 财政年份:2021
- 资助金额:
$ 49.68万 - 项目类别:
Continuing Grant
NSF Student Travel Grant for 2020 ACM International Conference on Measurement and Modeling of Computer Systems (ACM SIGMETRICS 2020)
NSF 学生旅费资助 2020 年 ACM 国际计算机系统测量和建模会议 (ACM SIGMETRICS 2020)
- 批准号:
2013729 - 财政年份:2020
- 资助金额:
$ 49.68万 - 项目类别:
Standard Grant
NSF Student Travel Grant for 2020 ACM International Conference on Measurement and Modeling of Computer Systems (ACM SIGMETRICS 2020)
NSF 学生旅费资助 2020 年 ACM 国际计算机系统测量和建模会议 (ACM SIGMETRICS 2020)
- 批准号:
2110139 - 财政年份:2020
- 资助金额:
$ 49.68万 - 项目类别:
Standard Grant
CRII: CIF: Models, Theories and Algorithms for Timeliness Optimization in Information-update Systems
CRII:CIF:信息更新系统时效性优化的模型、理论和算法
- 批准号:
1657162 - 财政年份:2017
- 资助金额:
$ 49.68万 - 项目类别:
Standard Grant
CAREER: Theory and Algorithms for Efficient Control of Wireless Networks with Jointly Optimized Performance: High Throughput, Low Delay, and Low Complexity
职业:具有联合优化性能的无线网络高效控制的理论和算法:高吞吐量、低延迟和低复杂性
- 批准号:
1651947 - 财政年份:2017
- 资助金额:
$ 49.68万 - 项目类别:
Continuing Grant
相似国自然基金
NURBS参数化的自交理论与算法研究
- 批准号:12301490
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
时序深度可加网络的算法与学习理论研究
- 批准号:62306338
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
图机器学习的理论、模型与算法设计
- 批准号:62376007
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
可信离线强化学习的置信下限方法:算法与理论
- 批准号:72371103
- 批准年份:2023
- 资助金额:41 万元
- 项目类别:面上项目
面向高维稀疏数据的特征交互选择:张量优化理论与算法
- 批准号:12371515
- 批准年份:2023
- 资助金额:43.5 万元
- 项目类别:面上项目
相似海外基金
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 49.68万 - 项目类别:
Continuing Grant
CAREER: Theory and Algorithms for Learning with Frozen Pretrained Models
职业:使用冻结的预训练模型进行学习的理论和算法
- 批准号:
2339978 - 财政年份:2024
- 资助金额:
$ 49.68万 - 项目类别:
Continuing Grant
CAREER: Continual Learning with Evolving Memory, Soft Supervision, and Cross-Domain Knowledge - Foundational Theory and Advanced Algorithms
职业:利用进化记忆、软监督和跨领域知识进行持续学习——基础理论和高级算法
- 批准号:
2338506 - 财政年份:2024
- 资助金额:
$ 49.68万 - 项目类别:
Continuing Grant
CAREER: Theory for Dynamic Graph Algorithms
职业:动态图算法理论
- 批准号:
2238138 - 财政年份:2023
- 资助金额:
$ 49.68万 - 项目类别:
Continuing Grant
CAREER: Parallel Algorithms: Theory for Practice
职业:并行算法:理论实践
- 批准号:
2238358 - 财政年份:2023
- 资助金额:
$ 49.68万 - 项目类别:
Continuing Grant