CAREER: Continual Learning with Evolving Memory, Soft Supervision, and Cross-Domain Knowledge - Foundational Theory and Advanced Algorithms
职业:利用进化记忆、软监督和跨领域知识进行持续学习——基础理论和高级算法
基本信息
- 批准号:2338506
- 负责人:
- 金额:$ 54.44万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-09-01 至 2029-08-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
As the landscape of data and learning environments expands rapidly, the utility of artificial intelligence hinges on its ability to scale and adapt. In response, continual learning is emerging as a promising paradigm to meet this demand. Distinct from other learning paradigms, continual learning emphasizes the ability to maintain performance on previously learned tasks while seamlessly integrating new information. It focuses on rapid adaptation to new environments by appropriately recalling past knowledge and actively seeking side information to accelerate learning and improve accuracy. However, current methods in continual learning are predominantly empirical and lack a clear theoretical foundation, limiting their wider application and hindering further progress. This project aims to bridge this gap by developing a principled framework for continual learning, consisting of novel theoretical insights and practical algorithmic designs. The research outcomes will substantially advance our understanding of continual learning, enrich its algorithmic framework, and provide scalable algorithm packages. The outcomes will be integrated into machine learning courses at all levels, benefiting students across disciplines such as electrical engineering, statistics, and computer science. The project will actively involve underrepresented students in STEM, synergizing research and education at undergraduate and graduate levels, and developing introductory materials for K-12 students through AI apprenticeship programs.The overarching goal of this project is to pioneer a methodological framework of continual learning for autonomous machine learners navigating dynamic data environments. The framework addresses three essential facets of continual learning. First, it will establish mathematical foundations of continual learning and scalable online algorithms to recollect an evolving memory for fast adaptation and capability expansion. Second, it will develop methods to amplify learning efficiency from informative, even less reliable, pseudo labels. Lastly, it will develop approaches for expanding the predictive power with task-specific assistance from peer learners who possess cross-modal data. The developed foundations will lead to novel algorithms to empower intelligent engineering systems to learn more efficiently and effectively in an ever-changing world. The project will also offer deep insights into pivotal machine learning questions, such as understanding the fundamental trade-offs between adaptivity and forgetting in dynamic learning environments, gauging the maximal influences of minor yet jointly dependent data perturbations on modeling results, and quantifying a model's room for improvement when the underlying law of probability remains elusive. Furthermore, these developments are anticipated to have broader impacts, enabling resource-constrained machine learners to continually broaden their learning capabilities in complex practical applications, such as intelligent transportation systems and cellular performance management.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着数据和学习环境的迅速扩展,人工智能的效用取决于其扩展和适应的能力。作为回应,持续学习正在成为满足这一需求的有前途的范例。与其他学习范式不同,持续学习强调在无缝集成新信息的同时保持先前学习任务表现的能力。它注重通过适当回忆过去的知识并积极寻找辅助信息来加速学习并提高准确性,从而快速适应新环境。然而,目前持续学习的方法主要是经验性的,缺乏明确的理论基础,限制了其更广泛的应用并阻碍了进一步的进展。该项目旨在通过开发持续学习的原则框架来弥补这一差距,其中包括新颖的理论见解和实用的算法设计。研究成果将极大地增进我们对持续学习的理解,丰富其算法框架,并提供可扩展的算法包。研究成果将被整合到各级机器学习课程中,使电气工程、统计学和计算机科学等跨学科的学生受益。 该项目将积自主机器学习者在动态数据环境中导航。该框架解决了持续学习的三个基本方面。首先,它将建立持续学习和可扩展在线算法的数学基础,以重新收集不断变化的记忆,以实现快速适应和能力扩展。其次,它将开发方法来提高从信息丰富、甚至不太可靠的伪标签中学习的效率。最后,它将开发通过拥有跨模式数据的同伴学习者针对特定任务的帮助来扩展预测能力的方法。所开发的基础将带来新颖的算法,使智能工程系统能够在不断变化的世界中更高效地学习。该项目还将深入洞察关键的机器学习问题,例如了解动态学习环境中适应性和遗忘之间的基本权衡,衡量微小但共同依赖的数据扰动对建模结果的最大影响,以及量化模型的空间当概率的基本规律仍然难以捉摸时,需要进行改进。此外,这些发展预计将产生更广泛的影响,使资源有限的机器学习者能够不断扩大其在复杂的实际应用中的学习能力,例如智能交通系统和蜂窝性能管理。该奖项反映了 NSF 的法定使命,并被认为是值得的通过使用基金会的智力优势和更广泛的影响审查标准进行评估来提供支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jie Ding其他文献
DRASIC: Distributed Recurrent Autoencoder for Scalable Image Compression
DRASIC:用于可扩展图像压缩的分布式循环自动编码器
- DOI:
10.1109/dcc47342.2020.00008 - 发表时间:
2019 - 期刊:
- 影响因子:0
- 作者:
Enmao Diao;Jie Ding;V. Tarokh - 通讯作者:
V. Tarokh
LAMB2 mutation with different phenotypes in China
.
中国不同表型的LAMB2突变。
- DOI:
10.5414/cn108979 - 发表时间:
2017 - 期刊:
- 影响因子:1.1
- 作者:
Hongwen Zhang;Jieyuan Cui;Fang Wang;H. Xiao;Jie Ding;Yong Yao - 通讯作者:
Yong Yao
Mutational analysis of potential pore-lining amino acids in TM IV of the Na(+)/H(+) exchanger.
Na( )/H( ) 交换器 TM IV 中潜在孔衬氨基酸的突变分析。
- DOI:
10.1016/j.bbamem.2007.08.011 - 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Emily R. Slepkov;Jie Ding;Jiayi Han;L. Fliegel - 通讯作者:
L. Fliegel
On the Fluid Approximation of a PEPA Model
PEPA 模型的流体近似
- DOI:
- 发表时间:
2012 - 期刊:
- 影响因子:0
- 作者:
Hui Dai;Jie Ding;Hong Gu - 通讯作者:
Hong Gu
Disrupting Homologous Recombination or Single-Strand Annealing Significantly Hinders CRISPR-Cas12a-Assisted Nonhomologous End-Joining Gene Editing Efficiency in Mycobacterium abscessus
破坏脓肿分枝杆菌中的同源重组或单链退火显着阻碍 CRISPR-Cas12a 辅助的非同源末端连接基因编辑效率
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:0
- 作者:
Sanshan Zeng;Yanan Ju;Md Shah Alam;Ziwen Lu;H. A. Hameed;Lijie Li;Xirong Tian;Cuiting Fang;Xiange Fang;Jie Ding;Xinyue Wang;Jinxing Hu;Shuai Wang;Tianyu Zhang - 通讯作者:
Tianyu Zhang
Jie Ding的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jie Ding', 18)}}的其他基金
Collaborative Research: SCALE MoDL: Advancing Theoretical Minimax Deep Learning: Optimization, Resilience, and Interpretability
合作研究:SCALE MoDL:推进理论极小极大深度学习:优化、弹性和可解释性
- 批准号:
2134148 - 财政年份:2021
- 资助金额:
$ 54.44万 - 项目类别:
Continuing Grant
相似国自然基金
混沌自演化下基于连续学习的数控机床运动精度全生命周期劣化机制
- 批准号:52375083
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向复杂应用环境的小样本连续表征学习方法及其应用
- 批准号:62302382
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向连续多工步自主作业的冗余自由度机器人运动规划技能学习
- 批准号:62373095
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于合作型强化学习算法的纯电动汽车连续决策优化研究
- 批准号:62302326
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于数据挖掘和深度强化学习的连续型生产过程运行参数自适应优化研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Towards Continual Learning on Evolving Graphs: from Memorization to Generalization
职业:走向演化图的持续学习:从记忆到泛化
- 批准号:
2338878 - 财政年份:2024
- 资助金额:
$ 54.44万 - 项目类别:
Continuing Grant
CAREER: Efficient, Dynamic, Robust, and On-Device Continual Deep Learning with Non-Volatile Memory based In-Memory Computing System
职业:使用基于非易失性内存的内存计算系统进行高效、动态、鲁棒、设备上持续深度学习
- 批准号:
2342726 - 财政年份:2023
- 资助金额:
$ 54.44万 - 项目类别:
Continuing Grant
CAREER: Visual Learning in an Open and Continual World
职业:开放和持续世界中的视觉学习
- 批准号:
2239292 - 财政年份:2023
- 资助金额:
$ 54.44万 - 项目类别:
Continuing Grant
CAREER: Enabling Continual Multi-view Representation Learning: An Adversarial Perspective
职业:实现持续的多视图表示学习:对抗性视角
- 批准号:
2144772 - 财政年份:2022
- 资助金额:
$ 54.44万 - 项目类别:
Continuing Grant
CAREER: Efficient, Dynamic, Robust, and On-Device Continual Deep Learning with Non-Volatile Memory based In-Memory Computing System
职业:使用基于非易失性内存的内存计算系统进行高效、动态、鲁棒、设备上持续深度学习
- 批准号:
2144751 - 财政年份:2022
- 资助金额:
$ 54.44万 - 项目类别:
Continuing Grant