CAREER: Automated Synthesis of Electromagnetic Devices for Nanophotonic and Radio Frequency Applications

职业:用于纳米光子和射频应用的电磁器件的自动合成

基本信息

  • 批准号:
    2047433
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-03-01 至 2026-02-28
  • 项目状态:
    未结题

项目摘要

The ever-increasing performance and efficiency demands on new technologies, such as the upcoming 5G cellular standard and next-generation computing, will necessitate a transformative approach towards electronic hardware design all the way down to the electromagnetics level. Significant progress has been made towards the automation and optimization of circuits, especially digital logic circuits, via computer-aided design techniques. In fact, the advent of digital synthesis, or the automated design of digital circuits by computers, has brought hardware into reality which was previously thought impossible, such as microprocessors with billions of transistors occupying form-factors of a few square-cm and capable of performing billions of mathematical operations per second. Presently, the underlying circuit components of a system are designed separately from the electromagnetic (EM) blocks, often by different engineers or even different institutions altogether. Unfortunately, most EM devices such as antennas, microwave devices, and even nanophotonic devices in photonic integrated circuits must be painstakingly designed manually from the ground up by a human engineer. This process is not only tedious and time-consuming, but also suboptimal and often leaves significant performance gains on the table due to the enormous degrees of freedom available for designing such devices which are impossible for a human to explore. This project aims to tackle these issues by developing an automated synthesis platform for EM devices, analogous in spirit to digital logic synthesis, which will save human engineers significant time spent designing these devices manually and lead to novel, non-intuitive structures. This will be the first generalized synthesis platform which can handle a wide class of devices across the EM spectrum. This research will be complemented by an educational plan which includes the development of a new graduate class, training graduate and undergraduate students in multi-disciplinary fields, and motivating K-12 students to pursue careers in STEM.Analytical solutions for Maxwell's equations, which describe all EM devices, do not exist except for simple toy problems. This significantly complicates the design of new EM devices and requires heuristic approaches and many time-consuming manual parameter sweeps. Despite the potential for unprecedented performance and time savings, there does not presently exist an automated synthesis framework for general EM devices which can operate with modest computing power. This project will lead to the design of such an automated EM synthesis platform by developing a scripting language to describe arbitrary EM devices in both the optical and radio-frequency regimes, advancing high-speed EM simulation methods based on boundary integral equations to decrease compute time and memory required by several orders of magnitude, and leveraging automated optimization algorithms capable of realizing new devices with little to no human intervention. The long-term goal of the project is to enable even the nonexpert with only modest computing capability, such as a desktop workstation, to design many types of different electromagnetic devices rapidly and efficiently in a matter of minutes to hours.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
对新技术(例如即将推出的 5G 蜂窝标准和下一代计算)不断增长的性能和效率要求将需要对电子硬件设计一直到电磁学级别采取变革性方法。通过计算机辅助设计技术,电路尤其是数字逻辑电路的自动化和优化已经取得了重大进展。事实上,数字合成或计算机数字电路自动设计的出现,使以前认为不可能的硬件成为现实,例如具有数十亿个晶体管的微处理器,其尺寸仅为几平方厘米,并且能够每秒执行数十亿次数学运算。目前,系统的底层电路组件通常由不同的工程师甚至不同的机构与电磁 (EM) 模块分开设计。不幸的是,大多数电磁设备,例如天线、微波设备,甚至光子集成电路中的纳米光子设备,都必须由人类工程师从头开始精心手动设计。这个过程不仅乏味且耗时,而且不是最理想的,并且由于设计此类设备具有巨大的自由度,而人类无法探索,因此常常无法获得显着的性能提升。该项目旨在通过开发电磁设备的自动合成平台来解决这些问题,该平台在精神上类似于数字逻辑合成,这将节省人类工程师手动设计这些设备的大量时间,并产生新颖的、非直观的结构。这将是第一个通用合成平台,可以处理整个电磁频谱范围内的各种设备。这项研究将得到一项教育计划的补充,其中包括开发新的研究生班、在多学科领域培训研究生和本科生以及激励 K-12 学生追求 STEM 职业。麦克斯韦方程组的解析解,描述了除了简单的玩具问题之外,所有的电磁设备都不存在。这使得新电磁设备的设计变得非常复杂,并且需要启发式方法和许多耗时的手动参数扫描。尽管具有前所未有的性能和节省时间的潜力,但目前不存在可以以适度的计算能力运行的通用 EM 设备的自动合成框架。该项目将通过开发一种脚本语言来描述光学和射频范围内的任意电磁设备,从而设计出这样一个自动化电磁合成平台,推进基于边界积分方程的高速电磁仿真方法以减少计算时间和所需的内存增加了几个数量级,并利用能够在很少或无需人工干预的情况下实现新设备的自动优化算法。该项目的长期目标是使即使是只有中等计算能力(例如桌面工作站)的非专家也能够在几分钟到几小时内快速有效地设计多种类型的不同电磁设备。该奖项反映了 NSF 的法定要求使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(4)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Fast Inverse Design of 3D Nanophotonic Devices Using Boundary Integral Methods
使用边界积分方法进行 3D 纳米光子器件的快速逆设计
  • DOI:
    10.1021/acsphotonics.2c01072
  • 发表时间:
    2022-10
  • 期刊:
  • 影响因子:
    7
  • 作者:
    Garza, Emmanuel;Sideris, Constantine
  • 通讯作者:
    Sideris, Constantine
H-Matrix Accelerated Direct Matrix Solver using Chebyshev-based Nyström Boundary Integral Equation Method
使用基于切比雪夫的 Nyström 边界积分方程方法的 H 矩阵加速直接矩阵求解器
Foundry-fabricated grating coupler demultiplexer inverse-designed via fast integral methods
通过快速积分方法逆向设计铸造厂制造的光栅耦合器解复用器
  • DOI:
    10.1038/s42005-022-00839-w
  • 发表时间:
    2022-03
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Sideris, Constantine;Khachaturian, Aroutin;White, Alexander D.;Bruno, Oscar P.;Hajimiri, Ali
  • 通讯作者:
    Hajimiri, Ali
Author Correction: Foundry-fabricated grating coupler demultiplexer inverse-designed via fast integral methods
作者更正:通过快速积分方法逆向设计铸造厂制造的光栅耦合器解复用器
  • DOI:
    10.1038/s42005-022-00877-4
  • 发表时间:
    2022-12
  • 期刊:
  • 影响因子:
    5.5
  • 作者:
    Sideris, Constantine;Khachaturian, Aroutin;White, Alexander D.;Bruno, Oscar P.;Hajimiri, Ali
  • 通讯作者:
    Hajimiri, Ali
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Constantine Sideris其他文献

A frequency-shift based CMOS magnetic biosensor with spatially uniform sensor transducer gain
具有空间均匀传感器传感器增益的基于频移的 CMOS 磁性生物传感器
A Chebyshev-Based High-Order-Accurate Integral Equation Solver for Maxwell’s Equations
基于切比雪夫的麦克斯韦方程组高阶精确积分方程求解器
p-Adaptive Quadrature for the Chebyshev-based Boundary Integral Equation Method
基于切比雪夫的边界积分方程法的p自适应求积
An integrated magnetic spectrometer for multiplexed biosensing
用于多重生物传感的集成磁谱仪
An ultrasensitive CMOS magnetic biosensor array with correlated double counting noise suppression
具有相关双计数噪声抑制功能的超灵敏 CMOS 磁性生物传感器阵列

Constantine Sideris的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Constantine Sideris', 18)}}的其他基金

ASCENT: Ultra-high Throughput Neural Recording using Flexible, Polymer-based Shanks as Terahertz Dielectric Waveguides
ASCENT:使用柔性聚合物柄作为太赫兹介电波导进行超高吞吐量神经记录
  • 批准号:
    2133138
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CRII: SHF: Ultra-fast Simulation and Automated Design of Silicon Photonics Devices
CRII:SHF:硅光子器件的超快速仿真和自动化设计
  • 批准号:
    1849965
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似国自然基金

全自动化运行城市轨道交通乘务计划优化问题研究
  • 批准号:
    72301192
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于单浆细胞筛选新技术的自动化抗体发现平台构建及工作机制研究
  • 批准号:
    32301266
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于多模型-自动化微流控芯片技术的三代EGFR-TKI耐药后个体化药物高效筛选平台的构建及应用
  • 批准号:
    82304435
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
开发2’-氟阿拉伯糖核酸的自动化Sanger测序新方法
  • 批准号:
    22307058
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
热化学非平衡下高马赫数超燃冲压发动机热力分析及其流道自动化设计
  • 批准号:
    52306006
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Automated Synthesis of Compound Machines Using Computational Design Optimization
职业:使用计算设计优化自动合成复合机器
  • 批准号:
    2311078
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CAREER: Guiding automated synthesis of hybrid perovskites towards stability via knowledge of nanoscale ionic mechanisms
职业:通过纳米级离子机制的知识指导杂化钙钛矿的自动化合成以实现稳定性
  • 批准号:
    2043205
  • 财政年份:
    2021
  • 资助金额:
    $ 50万
  • 项目类别:
    Continuing Grant
Identifying the role of dynamic ECM-derived forces in zebrafish semicircular canal morphogenesis
识别动态 ECM 衍生力在斑马鱼半规管形态发生中的作用
  • 批准号:
    10553276
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
Identifying the role of dynamic ECM-derived forces in zebrafish semicircular canal morphogenesis
识别动态 ECM 衍生力在斑马鱼半规管形态发生中的作用
  • 批准号:
    10547914
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
Identifying the role of dynamic ECM-derived forces in zebrafish semicircular canal morphogenesis
识别动态 ECM 衍生力在斑马鱼半规管形态发生中的作用
  • 批准号:
    10393115
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了