CAREER: Scalable Nanomanufacturing of Two-Dimensional Topological Materials for Quantum Device Applications

职业:用于量子器件应用的二维拓扑材料的可扩展纳米制造

基本信息

  • 批准号:
    2046936
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-05-01 至 2026-04-30
  • 项目状态:
    未结题

项目摘要

This Faculty Early Career Development (CAREER) grant supports research in the scalable nanomanufacturing of two-dimensional topological materials and the control of their structures and properties for high-performance quantum devices. The target materials are tellurene nanoribbons, which have potential applications in nanoelectronics, mid-infrared photonics, and wearable sensors. The project employs droplet-based flow reactors to identify the nucleation and growth mechanisms in these materials and gain the critical process-structure-property knowledge required for optimal production of tellurene nanoribbons with desired properties. The capability to manufacture high-quality two-dimensional quantum materials contributes significantly to the nation's economy and advances prosperity and welfare. The award aligns well with NSF's Quantum Leap Big Idea because two-dimensional crystals are candidate materials for next-generation quantum technologies in sensors, computing and communications. The research is holistically complemented by establishing an inclusive and flexible educational and outreach program based on curriculum development, industrial experience in college education, K-12 students, women and underrepresented minority outreach for training a high-quality future manufacturing workforce. This project allows advances in the knowledge base in material science, quantum engineering, nanotechnology and advanced manufacturing.Two-dimensional quantum spin Hall materials, such as tellurene nanoribbons, host topologically protected edge states that can enable fast charge transport with minimum power dissipation for high-speed, energy-efficient electronics. The critical challenges to deploying these materials are to manufacture them without expensive epitaxial substrates and control over their dimensions, phase, and defect content for practical applications. Continuous flow processes based on droplet reactors present multiple benefits over conventional batch approaches to fabricate nanomaterials. It enables excellent process homogeneity and reproducibility, rapid screening of reaction parameters, fully automated control, and customized products with high throughput at reasonable costs. Typically, the flow-synthesized nanomaterials are nanocrystals with particle-like morphologies. The scientific understanding and technical capability for manufacturing two-dimensional materials using flow processes are missing. This research is to discover the fundamental basis for producing, engineering, and deploying tellurene nanoribbons for practical quantum spin Hall device applications through scalable substrate-agnostic continuous nanomanufacturing processes. This project's research objectives are to (i) establish the droplet-based flow manufacturing capability for producing two-dimensional tellurene nanoribbons with controlled properties, (ii) develop a physics-based, data-driven theoretical framework for guiding and understanding the experiments, and (iii) characterize the materials and devices to identify the process-structure-property-performance relations. The continuous flow process employs in-situ and ex-situ characterization combined with theoretical exploration to understand the chemical pathways critical to engineering the nucleation and growth of tellurene nanoribbons with tailored properties for quantum device manufacturing.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该学院早期职业发展(CAREER)拨款支持二维拓扑材料的可扩展纳米制造及其高性能量子器件结构和性能控制的研究。目标材料是碲烯纳米带,其在纳米电子学、中红外光子学和可穿戴传感器方面具有潜在的应用。该项目采用基于液滴的流动反应器来识别这些材料中的成核和生长机制,并获得优化生产具有所需性能的碲烯纳米带所需的关键工艺结构性能知识。制造高质量二维量子材料的能力对国家经济、促进繁荣和福利做出了重大贡献。该奖项与美国国家科学基金会的量子飞跃大构想非常吻合,因为二维晶体是传感器、计算和通信领域下一代量子技术的候选材料。该研究得到了全面补充,建立了一个包容性和灵活的教育和推广计划,该计划基于课程开发、大学教育的行业经验、K-12学生、女性和代表性不足的少数族裔的推广,以培训高素质的未来制造业劳动力。该项目使材料科学、量子工程、纳米技术和先进制造方面的知识库取得了进步。二维量子自旋霍尔材料,例如碲烯纳米带,具有拓扑保护的边缘态,可以以最小的功耗实现快速电荷传输,从而实现高- 高速、节能的电子产品。使用这些材料的关键挑战是在没有昂贵的外延衬底的情况下制造它们,并控制它们的尺寸、相位和缺陷含量以适应实际应用。与传统的间歇式纳米材料制造方法相比,基于液滴反应器的连续流动工艺具有多种优势。它能够实现出色的工艺均匀性和再现性、反应参数的快速筛选、全自动控制以及以合理的成本实现高通量的定制产品。通常,流动合成的纳米材料是具有颗粒状形态的纳米晶体。缺乏利用流程制造二维材料的科学理解和技术能力。这项研究旨在通过可扩展的与基材无关的连续纳米制造工艺,探索生产、工程和部署碲烯纳米带的基本基础,以用于实际的量子自旋霍尔器件应用。该项目的研究目标是(i)建立基于液滴的流动制造能力,用于生产具有受控特性的二维碲烯纳米带,(ii)开发基于物理、数据驱动的理论框架来指导和理解实验,以及(iii) 表征材料和装置,以确定工艺-结构-性能-性能关系。连续流工艺采用原位和异位表征并结合理论探索,以了解对碲烯纳米带的成核和生长至关重要的化学途径,并为量子器件制造提供量身定制的性能。该奖项反映了 NSF 的法定使命,并被视为值得通过使用基金会的智力优点和更广泛的影响审查标准进行评估来支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Tunable Circular Photogalvanic and Photovoltaic Effect in 2D Tellurium with Different Chirality
不同手性二维碲的可调谐圆形光电效应和光伏效应
  • DOI:
    10.1021/acs.nanolett.3c00780
  • 发表时间:
    2023-04
  • 期刊:
  • 影响因子:
    10.8
  • 作者:
    Niu, Chang;Huang, Shouyuan;Ghosh, Neil;Tan, Pukun;Wang, Mingyi;Wu, Wenzhuo;Xu, Xianfan;Ye, Peide D.
  • 通讯作者:
    Ye, Peide D.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Wenzhuo Wu其他文献

Self-powered triboelectric velocity sensor for dual-mode sensing of rectified linear and rotary motions
自供电摩擦速度传感器,用于整流线性和旋转运动的双模式传感
  • DOI:
    10.1016/j.nanoen.2014.09.018
  • 发表时间:
    2014-11-01
  • 期刊:
  • 影响因子:
    17.6
  • 作者:
    Qingshen Jing;G. Zhu;Wenzhuo Wu;Peng Bai;Yannan Xie;Ray P. S. Han;Zhong Lin Wang
  • 通讯作者:
    Zhong Lin Wang
Piezotronics and piezo-phototronics for adaptive electronics and optoelectronics
用于自适应电子学和光电子学的压电电子学和压电光电子学
  • DOI:
    10.1038/natrevmats.2016.31
  • 发表时间:
    2016-05-10
  • 期刊:
  • 影响因子:
    83.5
  • 作者:
    Wenzhuo Wu;Zhong Lin Wang
  • 通讯作者:
    Zhong Lin Wang
Single-Atom Platinum Anchored on Submonolayer MoS2–x for Efficient Hydrogen Evolution
锚定在亚单层 MoS2™x 上的单原子铂可有效析氢
  • DOI:
    10.1021/acs.jpcc.3c05761
  • 发表时间:
    2023-11-09
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Wenzhuo Wu;Qingyong Tian;Yu Jia;Qun Xu
  • 通讯作者:
    Qun Xu
Quantum Transport and Band Structure Evolution under High Magnetic Field in Few-Layer Tellurene.
少层碲烯强磁场下的量子输运和能带结构演化。
  • DOI:
    10.1021/acs.nanolett.8b02368
  • 发表时间:
    2018-06-21
  • 期刊:
  • 影响因子:
    10.8
  • 作者:
    G. Qiu;Yixiu Wang;Y. Nie;Yongping Zheng;Kyeongjae Cho;Wenzhuo Wu;P. Ye
  • 通讯作者:
    P. Ye
A ferroelectric semiconductor field-effect transistor
铁电半导体场效应晶体管
  • DOI:
    10.1038/s41928-019-0338-7
  • 发表时间:
    2019-12-01
  • 期刊:
  • 影响因子:
    34.3
  • 作者:
    M. Si;A. Saha;Shengjie Gao;G. Qiu;J. Qin;Yuqin Duan;J. Jian;Chang Niu;Haiyan Wang;Wenzhuo Wu;S. Gupta;P. Ye
  • 通讯作者:
    P. Ye

Wenzhuo Wu的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Wenzhuo Wu', 18)}}的其他基金

Collaborative Research: Tellurene mid-infrared integrated photonics
合作研究:碲烯中红外集成光子学
  • 批准号:
    2024017
  • 财政年份:
    2020
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
NRI: INT: FIngers See Things Differently (FIST-D): A Robotic Explosive Ordnance Disposal (EOD) based on Augmented Tactile Imaging
NRI:INT:手指以不同的方式看待事物 (FIST-D):基于增强触觉成像的机器人爆炸物处理 (EOD)
  • 批准号:
    1925194
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
NRI: INT: FIngers See Things Differently (FIST-D): A Robotic Explosive Ordnance Disposal (EOD) based on Augmented Tactile Imaging
NRI:INT:手指以不同的方式看待事物 (FIST-D):基于增强触觉成像的机器人爆炸物处理 (EOD)
  • 批准号:
    1925194
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Scalable Nanomanufacturing of Large-area Two-dimensional Tellurene for High-performance Wearable Piezoelectric Devices
用于高性能可穿戴压电器件的大面积二维碲烯的可扩展纳米制造
  • 批准号:
    1762698
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似国自然基金

具备可扩展性与隐私保障的数据驱动分布式优化方法及其在需求响应中的应用
  • 批准号:
    72301008
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于可扩展去蜂窝架构的大规模低时延高可靠通信研究
  • 批准号:
    62371039
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于无监督持续学习的单细胞多组学数据可扩展整合方法研究
  • 批准号:
    62303488
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
自动驾驶场景下基于强化学习的可扩展多智能体协同策略研究
  • 批准号:
    62306062
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
区块链系统中面向业务优化的混合状态验证机制的可扩展性研究
  • 批准号:
    62302202
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: Scalable Nanomanufacturing of Perovskite-Analogue Nanocrystals via Continuous Flow Reactors
合作研究:通过连续流反应器进行钙钛矿类似物纳米晶体的可扩展纳米制造
  • 批准号:
    2315997
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Nanomanufacturing of Perovskite-Analogue Nanocrystals via Continuous Flow Reactors
合作研究:通过连续流反应器进行钙钛矿类似物纳米晶体的可扩展纳米制造
  • 批准号:
    2315996
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Nanomanufacturing Platform for Area-Selective Atomic Layer Deposition of Components for Ultra-Efficient Functional Devices
合作研究:用于超高效功能器件组件的区域选择性原子层沉积的可扩展纳米制造平台
  • 批准号:
    2225896
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: Scalable Nanomanufacturing Platform for Area-Selective Atomic Layer Deposition of Components for Ultra-Efficient Functional Devices
合作研究:用于超高效功能器件组件的区域选择性原子层沉积的可扩展纳米制造平台
  • 批准号:
    2225900
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Scalable nanomanufacturing of 2D layered materials and their integration into nano-enabled systems
二维层状材料的可扩展纳米制造及其集成到纳米系统中
  • 批准号:
    RGPIN-2019-06345
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了