Collaborative Research: Numerical Methods and Adaptive Algorithms for Sixth-Order Phase Field Models

合作研究:六阶相场模型的数值方法和自适应算法

基本信息

  • 批准号:
    2110774
  • 负责人:
  • 金额:
    $ 12.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

This project will use computational mathematics models to further the understanding of two applications, microemulsions systems and crystal formation models. The first class of applications has relevance for oil-water-surfactant systems, which are important in oil recovery, development of environmentally friendly solvents, consumer and commercial cleaning product formulations, and drug delivery systems. The crystal models to be studied will be useful in detecting topological defects within crystalline materials, a task which is of great interest in the material science community. Specific examples include supercooled liquids, crack propagation in a ductile material, and applications relating to photonics and semiconductors, cell structure substrates and MRI contrast agents. A major challenge impeding their use by the general mathematical and scientific community has been a lack of understanding of these complex systems. This project will build efficient algorithms for simulation that will support the study of these processes and the design of advanced materials. The project will provide opportunities to undergraduate and graduate students and introduce them to the theory and implementation of state-of-the-art numerical methods. In this project the PIs will develop C0 interior penalty finite element methods for the two classes of applications and mathematical models. The C0 interior penalty finite element method was originally constructed to handle fourth-order elliptic problems arising in mechanics, but its adaptations have been applied to other fourth- and sixth-order partial differential equations. The focus of this project is on numerical methods for time-dependent sixth-order partial differential equations. The high derivative order in combination with a time-dependent component presents many challenges to the creation of stable, convergent, and efficient numerical methods approximating solutions to these models. The work to be accomplished includes the establishment of formal proofs for the unique solvability, stability, and convergence of the proposed numerical methods. The largest challenge will be to develop a framework which establishes optimal order error estimates. Finally, in order to improve upon the efficiency of the proposed numerical methods, the PIs plan to develop efficient solvers for space-time discretized systems using operator-splitting techniques and space-time adaptivity based on a posteriori error estimates obtained by the goal-oriented dual weighted approach.This project is jointly funded by Computational Mathematics program, and by the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目将使用计算数学模型来进一步理解两种应用:微乳液系统和晶体形成模型。第一类应用与油-水-表面活性剂系统相关,这对于石油采收、环保溶剂的开发、消费者和商业清洁产品配方以及药物输送系统将有助于检测晶体材料内的拓扑缺陷,这是材料科学界非常感兴趣的任务,具体例子包括过冷液体、裂纹扩展。阻碍它们被一般数学和科学界使用的一个主要挑战是缺乏对这些复杂系统的理解。该项目将构建高效的算法。该项目将为本科生和研究生提供机会,并向他们介绍最先进的数值方法的理论和实施。 PI将开发C0内饰两类应用和数学模型的惩罚有限元方法 C0 内部惩罚有限元方法最初是为了处理力学中出现的四阶椭圆问题而构建的,但其修改已应用于其他四阶和六阶偏微分。该项目的重点是与时间相关的六阶偏微分方程的数值方法,高导数阶数与与时间相关的分量相结合,对创建稳定、收敛和高效的数值方法提出了许多挑战。解决方案要完成的工作包括为所提出的数值方法的独特可解性、稳定性和收敛性建立形式证明,最后,最大的挑战是开发一个建立最佳阶次误差估计的框架。为了提高所提出的数值方法的效率,PI计划使用算子分裂技术和基于通过目标导向的双加权获得的后验误差估计的时空自适应性来开发时空离散系统的高效求解器该项目由计算数学计划和刺激竞争研究既定计划 (EPSCoR) 联合资助。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Natasha Sharma其他文献

Clinical, Morphologic, and Molecular Features of MAP3K8 Rearranged Spitz Neoplasms
MAP3K8 重排 Spitz 肿瘤的临床、形态学和分子特征
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    Pragi Patel;Michael Hagstrom;Natasha Sharma;Alice Chen;Soneet Dhillon;M. Fumero;Shantel Olivares;P. Gerami
  • 通讯作者:
    P. Gerami
Influence of organic and synthetic fertilizers on soil physical properties.
有机肥和合成肥料对土壤物理性质的影响。
Utilization Pattern, Population Density and Supply Chain of Rhododendron arboreum and Rhododendron campanulatum in the Dhauladhar Mountain Range of Himachal Pradesh, India
印度喜马偕尔邦道拉达尔山脉树杜鹃和风铃杜鹃利用模式、种群密度及供应链
  • DOI:
    10.12691/aees-4-4-4
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    4.9
  • 作者:
    Natasha Sharma;C. Kala
  • 通讯作者:
    C. Kala
BRAF Mutated and Morphologically Spitzoid Tumors, a Subgroup of Melanocytic Neoplasms Difficult to Distinguish From True Spitz Neoplasms
BRAF 突变和形态学上的 Spitz 样肿瘤是黑素细胞肿瘤的一个亚组,很难与真正的 Spitz 肿瘤区分开来
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    5.6
  • 作者:
    P. Gerami;Alice Chen;Natasha Sharma;Pragi Patel;Michael Hagstrom;Pranav Kancherla;Tara Geraminejad;Shantel Olivares;Asok Biswas;M. Bosenberg;K. Busam;A. de la Fouchardière;Lyn M. Duncan;David E Elder;Jennifer S Ko;Gilles Landman;Alexander J Lazar;L. Lowe;D. Massi;D. Mihic;Douglas C Parker;R. Scolyer;Christopher R Shea;Artur Zembowicz;Sook Jung Yun;W. Blokx;Raymond L Barnhill
  • 通讯作者:
    Raymond L Barnhill
Robust a-posteriori error estimates for weak Galerkin method for the convection-diffusion problem
  • DOI:
    10.1016/j.apnum.2021.08.007
  • 发表时间:
    2021-06
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Natasha Sharma
  • 通讯作者:
    Natasha Sharma

Natasha Sharma的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Natasha Sharma', 18)}}的其他基金

Collaborative Research: Numerical Simulation of the Morphosynthesis of Polycrystalline Biominerals
合作研究:多晶生物矿物形态合成的数值模拟
  • 批准号:
    1520862
  • 财政年份:
    2015
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于MaCOM 1.0海洋数值模式的解析四维集合变分数据同化方法研究
  • 批准号:
    42376190
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
强磁场作用下两相铁磁流体动力学相场模型的高精度数值算法研究
  • 批准号:
    12361074
  • 批准年份:
    2023
  • 资助金额:
    27 万元
  • 项目类别:
    地区科学基金项目
各向异性柔性覆层湍流边界层直接数值模拟研究
  • 批准号:
    12362022
  • 批准年份:
    2023
  • 资助金额:
    31 万元
  • 项目类别:
    地区科学基金项目
二氧化碳在深部咸水层流动运移过程高效数值模拟研究
  • 批准号:
    52304030
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于衰减和频散逼近的TI粘弹性波方程有限差分数值求解新方法研究
  • 批准号:
    42304123
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: WoU-MMA: Understanding the Physics and Electromagnetic Counterparts of Neutrino Blazars with Numerical Simulations
合作研究:WoU-MMA:通过数值模拟了解中微子耀变体的物理和电磁对应物
  • 批准号:
    2308090
  • 财政年份:
    2023
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Evaluating and parameterizing wind stress over ocean surface waves using integrated high-resolution imaging and numerical simulations
合作研究:利用集成高分辨率成像和数值模拟评估和参数化海洋表面波浪的风应力
  • 批准号:
    2319535
  • 财政年份:
    2023
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Accurate and Structure-Preserving Numerical Schemes for Variable Temperature Phase Field Models and Efficient Solvers
合作研究:用于变温相场模型和高效求解器的精确且结构保持的数值方案
  • 批准号:
    2309547
  • 财政年份:
    2023
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Effect of Vertical Accelerations on the Seismic Performance of Steel Building Components: An Experimental and Numerical Study
合作研究:垂直加速度对钢建筑构件抗震性能的影响:实验和数值研究
  • 批准号:
    2244696
  • 财政年份:
    2023
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Standard Grant
eMB: Collaborative Research: Mechanistic models for seasonal avian migration: Analysis, numerical methods, and data analytics
eMB:协作研究:季节性鸟类迁徙的机制模型:分析、数值方法和数据分析
  • 批准号:
    2325195
  • 财政年份:
    2023
  • 资助金额:
    $ 12.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了