Algorithms and Numerical Methods for Optimization with Partial Differential Equation Constraints

偏微分方程约束优化的算法和数值方法

基本信息

  • 批准号:
    2110263
  • 负责人:
  • 金额:
    $ 34万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-15 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

Optimization problems with constraints are ubiquitous in science and engineering. Some examples include designing a drug delivery mechanism to maximize the impact on cancerous cells, maximizing oil recovery from the wells, designing new materials that can be manufactured using additive manufacturing, and machine learning for solving inverse problems. Many of these problems are inherently non-linear and non-smooth, which makes the development of algorithms and their analysis extremely challenging. The project aims to create new optimization algorithms that will overcome these challenges and that are widely applicable. The precise target applications include, magnetic drug targeting, quantum spin chains, harmonic maps, structure design, and solving inverse problems using machine learning. Open-source software will be created and collaborations with practitioners will be carried out to maximize the impact of the work.The applications described above can be modeled using partial differential equations (PDEs). These PDEs are geometric (harmonic maps), nonlocal (fractional), multiphysics (magnetic drug delivery), multiscale with an unknown domain, i.e., free boundary problems (FBPs). The goal of this project is to study optimization problems with PDE constraints, i.e., PDE constrained optimization. Specifically, it aims to create new optimization methods based on Deep Learning and Augmented Lagrangian frameworks to solve several currently intractable optimization problems, for instance, problems constrained by advection dominated (also limiting transport equations) arising in magnetic targeted drug delivery. All these problems are nonlinear, nonconvex, and non-smooth in nature. Novel optimization algorithms will provide new insights into nonconvex non-smooth problems. In particular for optimization problems with state or gradient constraints, where concepts from set-valued analysis are typically needed. The deep learning work will help create new research directions. Cancerous cells absorb only a small amount of medicine, magnetic drug targeting has shown to increase this absorption rate without harming vital organs. This research will also improve our understanding of magnetic fluids and will create mathematical understanding of control of conservation laws. Nonlocal problems are increasingly important in science and engineering. They lead, for instance, to better models for quantum spin chains, cardiac electrical response, additive manufacturing (materials science), image denoising and phase separation. Open-source software will be created. This will not only benefit scientists in optimization, FBPs, and nonlocal problems but also scientists in nonlinear PDEs and data science. The results will be disseminated via a special topics course, research publications, and talks. Two PhD students will get PhDs. Reading seminars for students will be created.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
带有约束的优化问题在科学和工程中普遍存在。一些例子包括设计药物输送机制以最大限度地提高对癌细胞的影响、最大限度地提高油井的采油率、设计可使用增材制造制造的新材料以及用于解决逆问题的机器学习。其中许多问题本质上是非线性和非平滑的,这使得算法的开发及其分析极具挑战性。该项目旨在创建新的优化算法来克服这些挑战并广泛适用。精确的目标应用包括磁性药物靶向、量子自旋链、调和图、结构设计以及使用机器学习解决逆问题。将创建开源软件,并与从业者进行合作,以最大限度地发挥工作的影响。上述应用程序可以使用偏微分方程(PDE)进行建模。这些偏微分方程是几何(调和图)、非局部(分数)、多物理场(磁性药物输送)、具有未知域的多尺度问题,即自由边界问题(FBP)。该项目的目标是研究具有 PDE 约束的优化问题,即 PDE 约束优化。具体来说,它的目标是创建基于深度学习和增强拉格朗日框架的新优化方法,以解决目前几个棘手的优化问题,例如磁性靶向药物输送中出现的平流主导(也限制传输方程)所限制的问题。所有这些问题本质上都是非线性、非凸和非光滑的。新颖的优化算法将为非凸非光滑问题提供新的见解。特别是对于具有状态或梯度约束的优化问题,通常需要集值分析的概念。深度学习工作将有助于创造新的研究方向。癌细胞仅吸收少量药物,磁性药物靶向已被证明可以提高吸收率而不损害重要器官。这项研究还将增进我们对磁性流体的理解,并将建立对守恒定律控制的数学理解。非局部问题在科学和工程中变得越来越重要。例如,它们为量子自旋链、心电反应、增材制造(材料科学)、图像去噪和相分离提供了更好的模型。将创建开源软件。这不仅有利于优化、FBP 和非局部问题领域的科学家,也有利于非线性偏微分方程和数据科学领域的科学家。结果将通过专题课程、研究出版物和演讲来传播。两名博士生将获得博士学位。将为学生举办阅读研讨会。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(20)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Approximation of Integral Fractional Laplacian and Fractional PDEs via sinc-Basis
  • DOI:
    10.1137/20m1374122
  • 发表时间:
    2020-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Harbir Antil;P. Dondl;Ludwig Striet
  • 通讯作者:
    Harbir Antil;P. Dondl;Ludwig Striet
Spectral, Tensor and Domain Decomposition Methods for Fractional PDEs
Parallel Deep ResNets for Chemically Reacting Flows
用于化学反应流的并行深度 ResNet
  • DOI:
    10.2514/6.2022-1076
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Brown, Thomas S.;Antil, Harbir;Lohner, Rainald;Verma, Deepanshu;Togashi, Fumiya
  • 通讯作者:
    Togashi, Fumiya
Sparse optimization problems in fractional order Sobolev spaces
分数阶 Sobolev 空间中的稀疏优化问题
  • DOI:
    10.1088/1361-6420/acbe5e
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    2.1
  • 作者:
    Antil, Harbir;Wachsmuth, Daniel
  • 通讯作者:
    Wachsmuth, Daniel
TTRISK: Tensor train decomposition algorithm for risk averse optimization
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Harbir Antil其他文献

Optimal control of the coefficient for the regional fractional \begin{document} $p$\end{document}-Laplace equation: Approximation and convergence
区域分数 egin{document} $p$end{document}-拉普拉斯方程系数的最优控制:逼近和收敛
Integer Optimal Control with Fractional Perimeter Regularization
分数周长正则化的整数最优控制
  • DOI:
    10.21105/joss.06451
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Harbir Antil;Paul Manns
  • 通讯作者:
    Paul Manns
A Note on Dimensionality Reduction in Deep Neural Networks using Empirical Interpolation Method
关于使用经验插值方法进行深度神经网络降维的注意事项
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Harbir Antil;Madhu Gupta;Randy Price
  • 通讯作者:
    Randy Price
Controllability properties from the exterior under positivity constraints for a 1-D fractional heat equation
一维分数热方程正约束下的外部可控性
Exterior Nonlocal Variational Inequalities
外部非局部变分不等式
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Harbir Antil;Madeline O. Horton;M. Warma
  • 通讯作者:
    M. Warma

Harbir Antil的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Harbir Antil', 18)}}的其他基金

Conference: Mathematical Opportunities in Digital Twins (MATH-DT)
会议:数字孪生中的数学机会 (MATH-DT)
  • 批准号:
    2330895
  • 财政年份:
    2023
  • 资助金额:
    $ 34万
  • 项目类别:
    Standard Grant
Nonlocal School on Fractional Equations
分数阶方程非局部学派
  • 批准号:
    2213723
  • 财政年份:
    2022
  • 资助金额:
    $ 34万
  • 项目类别:
    Standard Grant
Collaborative Research: Multilevel Methods for Optimal Control of Partial Differential Equations and Optimization-Based Domain Decomposition
协作研究:偏微分方程最优控制的多级方法和基于优化的域分解
  • 批准号:
    1913004
  • 财政年份:
    2019
  • 资助金额:
    $ 34万
  • 项目类别:
    Standard Grant
East Coast Optimization Meeting (ECOM) 2019
2019 年东海岸优化会议 (ECOM)
  • 批准号:
    1907412
  • 财政年份:
    2019
  • 资助金额:
    $ 34万
  • 项目类别:
    Standard Grant
Partial Differential Equation Constrained Optimization: Algorithms, Numerics, and Applications
偏微分方程约束优化:算法、数值和应用
  • 批准号:
    1818772
  • 财政年份:
    2018
  • 资助金额:
    $ 34万
  • 项目类别:
    Standard Grant
Numerical Analysis of Partial Differential Equation Constrained Optimization Problems
偏微分方程约束优化问题的数值分析
  • 批准号:
    1521590
  • 财政年份:
    2015
  • 资助金额:
    $ 34万
  • 项目类别:
    Standard Grant

相似国自然基金

新型数值方法和高频算法混合集成技术
  • 批准号:
    62231021
  • 批准年份:
    2022
  • 资助金额:
    291 万元
  • 项目类别:
    重点项目
非定常Ginzburg-Landau方程的无条件稳定的保结构数值方法
  • 批准号:
    12126318
  • 批准年份:
    2021
  • 资助金额:
    10.0 万元
  • 项目类别:
    数学天元基金项目
密集追踪数据动态建模新方法:数值优化算法及样本量设计
  • 批准号:
    32171089
  • 批准年份:
    2021
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
面向国产处理器的数值计算核心算法性能建模与优化方法研究
  • 批准号:
    61902411
  • 批准年份:
    2019
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目
几类分数阶微分方程的数值计算方法研究
  • 批准号:
    11901435
  • 批准年份:
    2019
  • 资助金额:
    20.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Developments and Applications of Numerical Verification Methods for Finite Element Approximation of Differential Equations
微分方程有限元逼近数值验证方法的发展与应用
  • 批准号:
    23K03232
  • 财政年份:
    2023
  • 资助金额:
    $ 34万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Data locality for sparse matrices via advanced optimisations in large-scale scientific programs
通过大规模科学项目中的高级优化实现稀疏矩阵的数据局部性
  • 批准号:
    22K17900
  • 财政年份:
    2022
  • 资助金额:
    $ 34万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Collaborative Research: Numerical Methods and Adaptive Algorithms for Sixth-Order Phase Field Models
合作研究:六阶相场模型的数值方法和自适应算法
  • 批准号:
    2110774
  • 财政年份:
    2021
  • 资助金额:
    $ 34万
  • 项目类别:
    Standard Grant
Collaborative Research: Numerical Methods and Adaptive Algorithms for Sixth-Order Phase Field Models
合作研究:六阶相场模型的数值方法和自适应算法
  • 批准号:
    2110768
  • 财政年份:
    2021
  • 资助金额:
    $ 34万
  • 项目类别:
    Standard Grant
Analyzing Streaming Multi-Sensor Data to Predict Stroke in Preterm Babies
分析流式多传感器数据以预测早产儿中风
  • 批准号:
    10250034
  • 财政年份:
    2021
  • 资助金额:
    $ 34万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了