CAREER: Adaptive Actuation and Control in Embodied Biohybrid Robots
职业:生物混合机器人的自适应驱动和控制
基本信息
- 批准号:2044785
- 负责人:
- 金额:$ 60万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2026-03-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Animals are often a source of inspiration in robotic design. By designing from animal blueprints, engineers can create robotic systems capable of walking, running, crawling, swimming, and even flying. However, even with the advances in robotics over the past decades, robotic systems still fall short of many of the capabilities seen in biological animals. One key difference between existing robots and their animal counterparts is that biological systems are made up of soft, adaptable materials, including muscles for actuation and neurons for control. This CAREER award investigates how to fabricate robust, adaptable actuators for biohybrid robots using living muscle, how these actuators adapt to exercise, and how to control biohybrid robots with living neurons. Additionally, this CAREER award supports educational and outreach initiatives to improve recruitment and retention of diverse students and faculty in robotics and STEM. Accessible age-appropriate educational materials based on the research outcomes will be developed, made available to middle and high school teachers, and integrated into a graduate course on Bioinspired Robotics. The research team will host virtual and in-person outreach events to introduce students to bioinspired and biohybrid robotics. Underrepresented undergraduate students will be recruited for summer research experiences in biohybrid robotics and modeling. Finally, the investigator will promote tools for recruitment and retention of women faculty in robotics. This 5-year CAREER project will result in bioactuators capable of interfacing with a range of robotic structures via tendon-like interfaces, bioinspired neural networks for bioactuator control, and the ability to perform basic ‘programming’ of biohybrid robots. Biohybrid robotics directly harnesses living tissues as renewable engineering materials. In particular, muscle-based bioactuators are self-healing, compliant, and adapt to loading. Whereas most biohybrid research to date has focused on biological materials as individual components of the system, approaches for the integrated design, fabrication, and ‘programming’ of robust bioactuators and biological control networks are needed to improve biohybrid robot performance and broaden applicability. To meet this need, this CAREER project will (1) enable adaptive bioactuation of a wide range of robotic peripheries through the creation of embedded biocompatible interfaces, (2) model and fabricate simple biological neural networks to control bioactuators, and (3) train integrated bioactuators and biological neural networks. Not only will the proposed research approach lead to advances in bioactuation and control, but it will also specifically focus on integrated biohybrid robot development. ‘Programmable’ biohybrid robots have applications in medicine where small-scale biocompatible systems could be used as self-actuating stents or medical implants, or as functional components of neuromuscular tissues-on-a-chip for drug-screening and neuroscience. The proposed research lays the foundation for addressing future challenges in biohybrid robotics, including integrating diverse sensing modalities into biohybrid robot systems, understanding the effect of embodiment on neuromuscular control circuits, and studying emergent dynamics in distributed biohybrid actuation systems. The research approach in this CAREER proposal will be integrated with an educational and outreach plan to (1) incorporate neuromuscular modeling in biohybrid robotics curriculum, (2) improve retention of diverse students in robotics through biohybrid robot experiences, and (3) build tools to improve visibility of women faculty in robotics towards improving retention.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
动物通常是机器人设计的灵感来源,通过根据动物蓝图进行设计,工程师可以创建能够行走、奔跑、爬行、游泳甚至飞行的机器人系统。现有机器人及其动物伙伴之间的许多功能仍然存在不足,因为生物系统是由柔软的、适应性强的材料组成,包括用于驱动的肌肉和用于控制的神经元。如何制造坚固的,使用活体肌肉的生物混合机器人的适应性执行器,这些执行器如何适应运动,以及如何控制具有活体神经元的生物混合机器人。此外,该职业奖支持教育和推广计划,以改善机器人和 STEM 领域多样化学生和教师的招募和保留。将根据研究成果开发适合年龄的教育材料,提供给初中和高中教师,并将其纳入仿生机器人学研究生课程中。向学生介绍生物启发和生物混合机器人的外展活动将招募代表性不足的本科生进行生物混合机器人和建模方面的夏季研究经验。将产生能够通过类腱接口与一系列机器人结构连接的生物执行器、用于生物执行器控制的仿生神经网络以及执行生物混合的基本“编程”的能力生物混合机器人直接利用活体组织作为可再生工程材料,特别是,基于肌肉的生物致动器具有自我修复、顺应性和适应负载的能力,但迄今为止大多数生物混合研究都集中在作为系统的单独组件的生物材料上。需要对稳健的生物执行器和生物控制网络进行集成设计、制造和“编程”的方法来提高生物混合机器人的性能并扩大适用性,为了满足这一需求,该职业项目将。 (1) 通过创建嵌入式生物相容性接口实现各种机器人外围设备的自适应生物驱动,(2) 建模和制造简单的生物神经网络来控制生物驱动器,(3) 训练集成生物驱动器和生物神经网络。所提出的研究方法会带来生物驱动和控制方面的进步,但它也将特别关注集成的“可编程”生物混合机器人的开发,该机器人在小型生物相容性系统可能的医学领域有应用。用作自动支架或医疗植入物,或用作药物筛选和神经科学的神经肌肉组织芯片的功能组件,为解决生物混合机器人技术的未来挑战奠定了基础,包括将不同的传感方式集成到其中。生物混合机器人系统,了解实施例对神经肌肉控制电路的影响,并研究分布式生物混合驱动系统中的紧急动力学。本职业提案中的研究方法将与教育和推广相结合。计划(1)将神经肌肉建模纳入生物混合机器人课程,反映出,(2)通过生物混合机器人体验提高不同学生对机器人技术的保留率,以及(3)构建工具来提高女性教师在机器人技术领域的知名度,从而提高保留率。该奖项 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(8)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Semi-Automated Quantitative Evaluation of Neuron Developmental Morphology In Vitro Using the Change-Point Test
使用变点测试对体外神经元发育形态进行半自动定量评估
- DOI:10.1007/s12021-022-09600-8
- 发表时间:2022-09
- 期刊:
- 影响因子:3
- 作者:Liao, Ashlee S.;Cui, Wenxin;Zhang, Yongjie Jessica;Webster
- 通讯作者:Webster
An integrated computer vision system for real-time monitoring and control of long-fiber embedded hydrogel 3D printing
用于实时监测和控制长纤维嵌入水凝胶3D打印的集成计算机视觉系统
- DOI:10.1016/j.matpr.2022.09.272
- 发表时间:2022-01
- 期刊:
- 影响因子:0
- 作者:Sun, Wenhuan;Webster
- 通讯作者:Webster
GANGLIA: A Tool for Designing Customized Neuron Circuit Patterns
ANGLIA:设计定制神经元电路模式的工具
- DOI:
- 发表时间:2023-08
- 期刊:
- 影响因子:0
- 作者:Liao, A.S.;Zhang, Y.J.;Webster
- 通讯作者:Webster
Biomimetic IGA neuron growth modeling with neurite morphometric features and CNN-based prediction
具有神经突形态特征和基于 CNN 的预测的仿生 IGA 神经元生长建模
- DOI:10.48550/arxiv.2304.11306
- 发表时间:2023-04-22
- 期刊:
- 影响因子:0
- 作者:Kuanren Qian;Ashlee S. Liao;Shixuan Gu;Victoria A. Webster;Y. Zhang
- 通讯作者:Y. Zhang
The Tall, the Squat, & the Bendy: Parametric Modeling and Simulation Towards Multi-functional Biohybrid Robots
高个子、矮个子、
- DOI:
- 发表时间:2023-08
- 期刊:
- 影响因子:0
- 作者:Schaffer, S.;Webster
- 通讯作者:Webster
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Victoria Webster-Wood其他文献
Victoria Webster-Wood的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Victoria Webster-Wood', 18)}}的其他基金
I-Corps: Translation potential of stereolithography 3D printing to create soft elastomers
I-Corps:立体光刻 3D 打印制造软弹性体的转化潜力
- 批准号:
2414710 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Conference/Collaborative Research: Interdisciplinary Workshop on Mechanical Intelligence; Alexandria, Virginia; late 2023/early 2024
会议/合作研究:机械智能跨学科研讨会;
- 批准号:
2335476 - 财政年份:2023
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: FRR: Adaptive mechanics, learning and intelligent control improve soft robotic grasping
合作研究:FRR:自适应力学、学习和智能控制改善软机器人抓取
- 批准号:
2138923 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
相似国自然基金
问题特征驱动的自适应群智能优化算法及其应用研究
- 批准号:62366022
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于自适应动态规划的非线性系统数据驱动最优输出调节
- 批准号:62373090
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
欠驱动假肢手机构设计及其自适应抓握特性研究
- 批准号:52305299
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
视觉注意驱动的自适应地图交互模型与方法
- 批准号:42371455
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
高速磁浮直线驱动系统牵引-悬浮耦合特性与自适应预测控制研究
- 批准号:52377068
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Smart Robotic Surfaces - Multi-scale Actuation of Topographies for Adaptive Adhesion
智能机器人表面 - 地形的多尺度驱动以实现自适应粘附
- 批准号:
RGPIN-2019-06760 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Discovery Grants Program - Individual
Smart Robotic Surfaces - Multi-scale Actuation of Topographies for Adaptive Adhesion
智能机器人表面 - 地形的多尺度驱动以实现自适应粘附
- 批准号:
RGPIN-2019-06760 - 财政年份:2022
- 资助金额:
$ 60万 - 项目类别:
Discovery Grants Program - Individual
Smart Robotic Surfaces - Multi-scale Actuation of Topographies for Adaptive Adhesion
智能机器人表面 - 地形的多尺度驱动以实现自适应粘附
- 批准号:
RGPIN-2019-06760 - 财政年份:2021
- 资助金额:
$ 60万 - 项目类别:
Discovery Grants Program - Individual
Smart Robotic Surfaces - Multi-scale Actuation of Topographies for Adaptive Adhesion
智能机器人表面 - 地形的多尺度驱动以实现自适应粘附
- 批准号:
RGPIN-2019-06760 - 财政年份:2021
- 资助金额:
$ 60万 - 项目类别:
Discovery Grants Program - Individual
Smart Robotic Surfaces - Multi-scale Actuation of Topographies for Adaptive Adhesion
智能机器人表面 - 地形的多尺度驱动以实现自适应粘附
- 批准号:
RGPIN-2019-06760 - 财政年份:2020
- 资助金额:
$ 60万 - 项目类别:
Discovery Grants Program - Individual