Collaborative Research: FRR: Adaptive mechanics, learning and intelligent control improve soft robotic grasping
合作研究:FRR:自适应力学、学习和智能控制改善软机器人抓取
基本信息
- 批准号:2138923
- 负责人:
- 金额:$ 41.74万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2022
- 资助国家:美国
- 起止时间:2022-02-01 至 2025-01-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Handling soft, fragile, or slippery objects such as ripe fruit remains a challenge in robotics. Soft robotic graspers show tremendous promise in safely handling such objects without damaging them. Furthermore, creating software to control soft robots poses an additional challenge. In contrast, many animals with soft bodies solve this problem everyday as they forage and feed. Not only are they able to grasp and manipulate soft and fragile objects, but animals can also learn how to safely interact with new objects and vary how much force they apply during grasping based on their prior experience. This project will take inspiration from an animal with a body, the sea slug, that feeds successfully on a range of seaweeds that vary greatly in size, toughness and shape, to create new type of soft grasping robot. This project will also create a mechanism that can learn how to safely grasp a wide range of objects, including fragile foods like tomatoes and mushrooms. The ability for a robot to learn how to safely handle soft and fragile objects will have future applications in agriculture, manufacturing, and medicine. This project will also support the training of a diverse workforce in science and engineering. Students from grade school through college will be included as research participants to test the robot. Additionally, this project will support cross-disciplinary training through graduate student training, outreach activities, summer research experiences for undergraduates, and internships in scientific illustration.This project will test the hypothesis that soft, morphologically intelligent grasping robots with onboard bioinspired learning and local control will improve grasping performance and ease of use by rapidly adjusting controller and actuator properties and learning in real-time. To test this hypothesis, this project will: (1) implement actuator adaptability over short timescales, mimicking short-term changes in biological muscle, (2) implement local control adaptability through short-term learning in a synthetic nervous system (SNS), mimicking short-term network changes in biological neural systems, and (3) implement longer-term synaptic weight changes in an SNS, mimicking learning from experience. In Aims 1 and 2, a bioinspired approach will be applied to develop a soft grasper inspired by Aplysia californica (sea slug) feeding. In Aim 3, this approach will be extended to a robot arm and long-term learning will be incorporated into the controller. To precisely identify elements of the network subject to learning, this project will study grasping in a tractable animal model, Aplysia californica. This marine sea slug is adept at grasping soft, fragile, slippery objects and rapidly learns with experience. Furthermore, Aplysia’s grasping control circuitry contains only a few hundred neurons, allowing the measurement of specific changes in key network elements during learning. To assess the value of biological principles for grasping, this project will use human subjects to measure the robotic grasper’s performance, ease of use, and operator training time. Baseline data will be established with a conventional grasper and performance will be compared as adaptability is integrated into the system.This project is supported by the cross-directorate Foundational Research in Robotics program, jointly managed and funded by the Directorates for Engineering (ENG) and Computer and Information Science and Engineering (CISE).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
处理柔软、易碎或光滑的物体(例如成熟的水果)仍然是机器人技术中的一个挑战,软体机器人抓取器在安全地处理此类物体而不损坏它们方面表现出了巨大的前景。身体柔软的动物每天在觅食和进食时都会解决这个问题,它们不仅能够抓住和操纵柔软而易碎的物体,而且还可以学习如何安全地与新物体互动,并根据抓握过程改变它们施加的力量。根据他们之前的经验。将从一种有身体的动物——海蛞蝓中获得灵感,这种动物成功地以一系列尺寸、韧性和形状各不相同的海藻为食,创造出新型的软抓取机器人。学习如何安全地抓取各种物体,包括西红柿和蘑菇等易碎食物。机器人学习如何安全地处理柔软和易碎物体的能力也将在农业、制造业和医学领域得到应用。支持多元化劳动力的培训此外,该项目还将通过研究生培训、外展活动、本科生暑期研究经历以及科学插图实习来支持跨学科培训。该项目将测试这样的假设:具有机载仿生学习和本地控制功能的软形态智能抓取机器人将通过快速调整控制器和执行器属性来提高抓取性能和易用性,并且实时学习将:(1)实施。执行器在短时间尺度上的适应性,模仿生物肌肉的短期变化,(2)通过合成神经系统(SNS)中的短期学习实现局部控制适应性,模仿生物神经系统中的短期网络变化,以及(3 )在 SNS 中实现长期突触权重变化,模仿从经验中学习在目标 1 和 2 中,将采用生物启发方法来开发受海兔启发的软抓取器。在目标 3 中,这种方法将扩展到机器人手臂,并将长期学习纳入控制器中,为了精确识别需要学习的网络元素,该项目将研究易驯化动物模型中的抓取。海兔(Aplysia californica)这种海洋海蛞蝓擅长抓握柔软、易碎、光滑的物体,并且可以通过经验快速学习。此外,海兔的抓握控制电路仅包含数百个神经元,可以测量。为了评估学习过程中关键网络元素的具体变化,该项目将使用人类受试者来测量机器人抓取器的性能、易用性和操作员培训时间,并将使用传统抓取器建立基线数据。当适应性集成到系统中时,将比较性能和性能。该项目得到跨部门机器人基础研究项目的支持,该项目由工程理事会 (ENG) 和计算机与信息科学与工程理事会 (CISE) 共同管理和资助.这个奖项体现了通过使用基金会的智力价值和更广泛的影响审查标准进行评估,NSF 的法定使命被认为值得支持。
项目成果
期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Bioinspired Synthetic Nervous System Controller for Pick-and-Place Manipulation
用于拾放操作的仿生合成神经系统控制器
- DOI:10.1109/icra48891.2023.10161198
- 发表时间:2023-05
- 期刊:
- 影响因子:0
- 作者:Li, Yanjun;Sukhnandan, Ravesh;Gill, Jeffrey P.;Chiel, Hillel J.;Webster;Quinn, Roger D.
- 通讯作者:Quinn, Roger D.
Synthetic Nervous System Control of a Bioinspired Soft Grasper for Pick-and-Place Manipulation
用于拾放操作的仿生软抓取器的合成神经系统控制
- DOI:
- 发表时间:2023-08
- 期刊:
- 影响因子:0
- 作者:Sukhnandan, Ravesh;Li, Yanjun;Wang, Yu;Bhammar, Anaya;Dai, Kevin;Bennington, Michael;Chiel, Hillel J;Quinn, Roger D;Webster
- 通讯作者:Webster
Design and Characterization of Viscoelastic McKibben Actuators with Tunable Force-Velocity Curves
具有可调力-速度曲线的粘弹性 McKibben 执行器的设计和表征
- DOI:10.1109/robosoft55895.2023.10122014
- 发表时间:2023-04
- 期刊:
- 影响因子:0
- 作者:Bennington, Michael J.;Wang, Tuo;Yin, Jiaguo;Bergbreiter, Sarah;Majidi, Carmel;Webster
- 通讯作者:Webster
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Victoria Webster-Wood其他文献
Victoria Webster-Wood的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Victoria Webster-Wood', 18)}}的其他基金
I-Corps: Translation potential of stereolithography 3D printing to create soft elastomers
I-Corps:立体光刻 3D 打印制造软弹性体的转化潜力
- 批准号:
2414710 - 财政年份:2024
- 资助金额:
$ 41.74万 - 项目类别:
Standard Grant
Conference/Collaborative Research: Interdisciplinary Workshop on Mechanical Intelligence; Alexandria, Virginia; late 2023/early 2024
会议/合作研究:机械智能跨学科研讨会;
- 批准号:
2335476 - 财政年份:2023
- 资助金额:
$ 41.74万 - 项目类别:
Standard Grant
CAREER: Adaptive Actuation and Control in Embodied Biohybrid Robots
职业:生物混合机器人的自适应驱动和控制
- 批准号:
2044785 - 财政年份:2021
- 资助金额:
$ 41.74万 - 项目类别:
Continuing Grant
相似国自然基金
IGF-1R调控HIF-1α促进Th17细胞分化在甲状腺眼病发病中的机制研究
- 批准号:82301258
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
CTCFL调控IL-10抑制CD4+CTL旁观者激活促口腔鳞状细胞癌新辅助免疫治疗抵抗机制研究
- 批准号:82373325
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
RNA剪接因子PRPF31突变导致人视网膜色素变性的机制研究
- 批准号:82301216
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
血管内皮细胞通过E2F1/NF-kB/IL-6轴调控巨噬细胞活化在眼眶静脉畸形中的作用及机制研究
- 批准号:82301257
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于多元原子间相互作用的铝合金基体团簇调控与强化机制研究
- 批准号:52371115
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
FRR: Collaborative Research: Unsupervised Active Learning for Aquatic Robot Perception and Control
FRR:协作研究:用于水生机器人感知和控制的无监督主动学习
- 批准号:
2237576 - 财政年份:2023
- 资助金额:
$ 41.74万 - 项目类别:
Standard Grant
FRR: Collaborative Research: Unsupervised Active Learning for Aquatic Robot Perception and Control
FRR:协作研究:用于水生机器人感知和控制的无监督主动学习
- 批准号:
2237577 - 财政年份:2023
- 资助金额:
$ 41.74万 - 项目类别:
Standard Grant
FRR: Collaborative Research: Collaborative Learning for Multi-robot Systems with Model-enabled Privacy Protection and Safety Supervision
FRR:协作研究:具有模型支持的隐私保护和安全监督的多机器人系统协作学习
- 批准号:
2219488 - 财政年份:2022
- 资助金额:
$ 41.74万 - 项目类别:
Standard Grant
Collaborative Research: FRR: Adaptive mechanics, learning and intelligent control improve soft robotic grasping
合作研究:FRR:自适应力学、学习和智能控制改善软机器人抓取
- 批准号:
2138873 - 财政年份:2022
- 资助金额:
$ 41.74万 - 项目类别:
Standard Grant
FRR: Collaborative Research: Collaborative Learning for Multi-robot Systems with Model-enabled Privacy Protection and Safety Supervision
FRR:协作研究:具有模型支持的隐私保护和安全监督的多机器人系统协作学习
- 批准号:
2219487 - 财政年份:2022
- 资助金额:
$ 41.74万 - 项目类别:
Standard Grant