The Role of Plasmon Initiated Electron Transfer in Enhanced Raman Spectroscopy

等离激元引发电子转移在增强拉曼光谱中的作用

基本信息

  • 批准号:
    2107791
  • 负责人:
  • 金额:
    $ 47.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-01 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

With support from the Chemical Measurement and Imaging (CMI) Program in the Division of Chemistry, Zachary Schultz and his group at Ohio State University are investigating new ways to detect and quantify trace proteins and other biomolecules using lasers. The ability to detect specific biomolecules in real-world samples is important for identifying pathogens, tracking environmental pollutants, and monitoring disease. Specialized techniques called surface-enhanced Raman scattering (SERS) and tip-enhanced Raman scattering (TERS) use nanoparticles to increase the strength of the signals observed in some laser-based measurements. Currently, there are only a limited number of molecules that are readily detected using these techniques under ambient conditions and in complex systems. In order to address this limitation, the research team led by Dr. Schultz is working to better understand the mechanism that is responsible for the increased signals when proteins are in contact with nanoparticles by using a laser to illuminate individual proteins or protein fragments through a microscope. The goal of the research is to enable more sensitive measurements that will make it possible to detect and identify a much wider range of biomolecules. The project also addresses the need for a technically skilled and scientifically informed workforce by incorporating aspects of the research project into educational materials for the approximately 8,000 students who take general chemistry courses each year at Ohio State University. The project also provides valuable research experience for undergraduate and graduate students, and supports the Schultz laboratory’s collaboration with students and faculty in Chile, broadening student perspectives on the international nature and impact of science. The research team led by Dr. Zachary Schultz is testing their hypothesis that stable radicals formed from interactions with excited plasmon resonances on nanoparticles can transiently and selectively increase the Raman cross-sections of biomolecules in SERS and TERS measurements. The team’s experimental measurements suggest that such interactions occur, and even alter the observed SERS spectra of the amino acid tryptophan and some tryptophan-containing proteins. Imaging the SERS emission from a sample and applying super-resolution algorithms should allow the researchers to locate and identify individual molecules that are in contact with a nanoparticle. These measurements are expected to simultaneously resolve the SERS spectrum of the individual molecule, even in complex samples. The information the team obtains from these sophisticated measurements should enable them to identify proteins and other biomolecules that exhibit increased sensitivity, and also enable them to better understand what makes such enhancements possible. Based on the improved understanding of the mechanism for SERS and TERS enhancements, the outcomes of this research can help guide the development of new and improved chemical sensors that are important for a very wide range of applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
在化学划分的化学测量和成像(CMI)计划的支持下,Zachary Schultz及其在俄亥俄州立大学的小组正在研究使用激光检测和量化痕量蛋白质和其他生物分子的新方法。在现实世界样品中检测特定生物分子的能力对于鉴定病原体,跟踪环境污染物和监测疾病很重要。专门的技术称为表面增强的拉曼散射(SERS)和尖端增强的拉曼散射(TERS),使用纳米粒子来增加在某些基于激光的测量中观察到的信号的强度。当前,在环境条件和复杂系统中,使用这些技术很容易检测到有限数量的分子。为了解决这一局限性,由舒尔茨博士领导的研究团队正在努力更好地了解当蛋白质与纳米颗粒接触时,通过使用激光通过显微镜照亮单个蛋白质或蛋白质碎片的机制。该研究的目的是实现更敏感的测量结果,使检测和识别更广泛的生物分子成为可能。该项目还解决了对技术熟练和科学知识的劳动力的需求,这是通过将研究项目的各个方面增加到教育材料中,每年在俄亥俄州立大学参加一般化学课程的大约8,000名学生。该项目还为本科生和研究生提供了宝贵的研究经验,并支持舒尔茨实验室与智利学生和教职员工的合作,扩大了学生对科学国际性质和影响的看法。由Zachary Schultz博士领导的研究团队正在检验他们的假设,即由与纳米颗粒上令人兴奋的等离子体共振相互作用形成的稳定的自由基可以瞬时,有选择地增加SERS和TERS测量结果中生物分子的拉曼横截面。该团队的实验测量表明,这种相互作用发生,甚至改变了观察到的氨基酸色氨酸和一些含有色氨酸的蛋白的SERS光谱。从样品中成像SERS发射并应用超分辨率算法应使研究人员可以定位和识别与纳米颗粒接触的单个分子。即使在复杂的样品中,这些测量值有望简单地解决单个分子的SERS光谱。团队从这些复杂的测量结果中获取的信息应使他们能够识别出暴露于提高灵敏度的蛋白质和其他生物分子,并使他们能够更好地了解使这种增强能力成为可能的原因。基于对SERS和TERS增强机制的提高理解,这项研究的结果可以帮助指导开发新的和改进的化学传感器,这对于非常广泛的应用非常重要。该奖项反映了NSF的法定任务,并被认为是通过评估基金会的知识和更广泛的影响来审查Criteria的评估。

项目成果

期刊论文数量(6)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Plasmonically Generated Tryptophan Radical Anion on Gold Nanoparticles Investigated by Combined Surface-Enhanced Raman Scattering and Density Functional Theory Calculations
  • DOI:
    10.1021/acs.jpcc.1c07840
  • 发表时间:
    2021-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Chelsea M. Zoltowski;Remy F Lalisse;C. Hadad;Zachary D. Schultz
  • 通讯作者:
    Chelsea M. Zoltowski;Remy F Lalisse;C. Hadad;Zachary D. Schultz
Investigation of SERS Frequency Fluctuations Relevant to Sensing and Catalysis.
  • DOI:
    10.1021/acs.jpcc.2c03150
  • 发表时间:
    2022-09-01
  • 期刊:
  • 影响因子:
    3.7
  • 作者:
    Zoltowski, Chelsea M.;Shoup, Deben N.;Schultz, Zachary D.
  • 通讯作者:
    Schultz, Zachary D.
Monitoring and Characterization of Milk Fouling on Stainless Steel Using a High-Pressure High-Temperature Quartz Crystal Microbalance with Dissipation
使用具有耗散的高压高温石英晶体微天平监测和表征不锈钢上的牛奶污垢
  • DOI:
    10.1021/acs.langmuir.2c00419
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    Huellemeier, Holly A.;Eren, Necla M.;Payne, Taylor D.;Schultz, Zachary D.;Heldman, Dennis R.
  • 通讯作者:
    Heldman, Dennis R.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Zachary Schultz其他文献

Zachary Schultz的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Zachary Schultz', 18)}}的其他基金

MRI: Acquisition of Photothermal Infrared Raman Microscope for High Resolution Label-free Chemical Imaging
MRI:获取光热红外拉曼显微镜进行高分辨率无标记化学成像
  • 批准号:
    2117225
  • 财政年份:
    2021
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Standard Grant
IDBR: TYPE A, Online Liquid Chromatography - Surface Enhanced Raman Detection for Metabolic Profiling
IDBR:A 型,在线液相色谱 - 用于代谢分析的表面增强拉曼检测
  • 批准号:
    1830153
  • 财政年份:
    2018
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Continuing Grant
Raman enhancements in coupled nanostructures for TERS imaging
用于 TERS 成像的耦合纳米结构的拉曼增强
  • 批准号:
    1830994
  • 财政年份:
    2018
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Continuing Grant
Raman enhancements in coupled nanostructures for TERS imaging
用于 TERS 成像的耦合纳米结构的拉曼增强
  • 批准号:
    1507287
  • 财政年份:
    2015
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Continuing Grant
IDBR: TYPE A, Online Liquid Chromatography - Surface Enhanced Raman Detection for Metabolic Profiling
IDBR:A 型,在线液相色谱 - 用于代谢分析的表面增强拉曼检测
  • 批准号:
    1455445
  • 财政年份:
    2015
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Continuing Grant

相似国自然基金

基于物理启发领域泛化的跨装置等离子体破裂预测方法研究
  • 批准号:
    12375219
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
常压空气暖等离子体耦合催化剂固氮研究
  • 批准号:
    52377155
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
船机排温条件下等离子体与催化剂协同的氨分解制氢机制研究
  • 批准号:
    52301382
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
分子印迹磁性有序多孔光子晶体微球等离子体3DSERS仿生芯片高通量检测谷物中的多元真菌毒素研究
  • 批准号:
    32372418
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
等离子体刻蚀条件下光刻机用钇基复合陶瓷涂层的失效机制
  • 批准号:
    52371055
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

Plasmon-Enhanced FerroElectric Discovery
等离激元增强铁电的发现
  • 批准号:
    EP/X034593/1
  • 财政年份:
    2024
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Research Grant
Next Generation Plasmon Coupling Nanosensors
下一代等离子耦合纳米传感器
  • 批准号:
    2344525
  • 财政年份:
    2024
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Standard Grant
Quantum Hall plasmon resonator-based qubit sensing and multi-qubit coupling
基于量子霍尔等离子体谐振器的量子位传感和多量子位耦合
  • 批准号:
    24K06915
  • 财政年份:
    2024
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Collaborative Research: Probing and Controlling Exciton-Plasmon Interaction for Solar Hydrogen Generation
合作研究:探测和控制太阳能制氢的激子-等离子体激元相互作用
  • 批准号:
    2230729
  • 财政年份:
    2023
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Continuing Grant
Establishment of highly selective production method of metal nanoparticle dimer using plasmon induced chemical reaction
利用等离子体诱导化学反应高选择性生产金属纳米粒子二聚体的方法的建立
  • 批准号:
    22KJ2306
  • 财政年份:
    2023
  • 资助金额:
    $ 47.5万
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了