Collaborative Research: Probing and Controlling Exciton-Plasmon Interaction for Solar Hydrogen Generation

合作研究:探测和控制太阳能制氢的激子-等离子体激元相互作用

基本信息

  • 批准号:
    2230729
  • 负责人:
  • 金额:
    $ 28.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-01 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

Both semiconductors and metals can be produced in the form of nanoparticles, a size of about 10,000 times smaller than the thickness of a typical human hair. Certain semiconductor nanoparticles, called semiconductor quantum dots, exhibit new properties when the electrons, also called excitons, in the tiny crystals are spatially squeezed and exposed to light. Similarly, when a group of electrons in a small metal nanoparticle are confined in space and subject to light, hot electrons, called plasmons, are generated in these metal nanostructures that exhibit novel characteristics. Interaction between excitons in semiconductor quantum dots and plasmons in metal nanostructures are expected to result in new fundamental phenomenon and to be useful for many emerging technologies. In this collaborative project, PI Jin Z. Zhang from the University of California Santa Cruz and PI Shengli Zou from the University of Central Florida will study semiconductor quantum dots-plasmonic metal nanostructures with controlled electronic interactions as a new class of hybrid nanomaterials called semiconductor-metal heterojunctions. Unlike traditional semiconductor or metal materials, these heterojunctions give rise to unusual properties and novel functionalities. Working with their students, PIs Zhang and Zou will develop ways to create new semiconductor-metal nano-heterojunctions where the electrons communicate in a controlled manner by linking molecules. This project can have significant impacts on applications ranging from nano-photonics to environment and energy, for example advancing renewable solar fuel generation. This project will also provide opportunities for training future scientists and engineers in advanced experimental and computational techniques. Through their “open lab” focusing on “Solar Hydrogen from Seawater” each summer, local high school students and teachers will be introduced to the research of this project to enhance public awareness about science.This collaborative research team will develop novel semiconductor-metal nano heterojunctions to investigate the fundamental interactions between exciton generated on semiconductor quantum dots and plasmon produced in plasmonic metal nanostructures, named “plexciton” from a dynamic perspective using ultrafast laser spectroscopy. This research is motivated by the need to address the challenge that electronic coupling between semiconductor quantum dots and plasmons in plasmonic metal nanostructures is not well understood, hindering device applications in emerging technologies based on semiconductor-metal heterojunctions involving light illumination. The project involves the systematic study of fundamental factors, such as size, shape, and surface of both the semiconductor quantum dots and plasmons in plasmonic metal nanostructures, which determine the electronic coupling between the semiconductor quantum dots and plasmons in plasmonic metal nanostructures. This will be accomplished by developing designer linker molecules that control and enhance the coupling between them. The electronic coupling between semiconductor quantum dots and plasmons in plasmonic metal nanostructures will be characterized using a combination of time-resolved photoluminescence, transmission electron microscopy, infrared spectroscopy, nuclear magnetic resonance, electrochemistry, Raman spectroscopy, and ultrafast pump-probe laser spectroscopy methods. Unique conductive or aromatic ligand molecules will be used to both stabilize the semiconductor quantum dots and plasmons in plasmonic metal nanostructures and alter and enhance their electronic coupling so that synergistic effects are achieved between the two nanostructures for photonics applications including light energy conversion into electricity or chemical fuel such as hydrogen. Computational studies will explore the semiconductor quantum dots-plasmons in plasmonic metal nanostructures interaction and guide and corroborate experimental studies. The project will also provide opportunities for training future scientists in advanced experimental and computational techniques. Through their “open lab” which focuses on “Solar Hydrogen from Seawater” each summer they will introduce the research of this project to local high school students and teachers to enhance public awareness about science.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
半导体和金属都可以以纳米颗粒的形式产生,比典型人毛的厚度小约10,000倍。某些半导体纳米颗粒(称为半导体量子点)在微小晶体中的电子(也称为激素)被空间挤压并暴露于光线时,暴露了新特性。同样,当小型金属纳米颗粒中的一组电子被限制在空间中并受到光的热电子(称为等离子体)的影响,在这些金属纳米结构中会产生,这些金属纳米结构暴露了新的特征。半导体量子点中的激子之间的相互作用与金属纳米结构中的等离子之间的相互作用预计将导致新的基本现象,并且对许多新兴技术有用。在这个合作项目中,来自佛罗里达州中部圣克鲁斯分校的Pi Jin Z. Zhang和Pi Shengli Zou将研究具有控制性电子互动的半导体量子点 - 质量金属纳米纳米纳米结构,它们是一种新型的混合纳米材料,称为新型纳米材料,称为半纳米材料,称为半导管。与传统的半导体或金属材料不同,这些异质界产生了异常的特性和新型功能。 PIS Zhang和Zou与学生合作,将开发方法来创建新的半导体 - 金属纳米核界面,电子设备通过连接分子以受控方式进行通信。该项目可能会对从纳米 - 光音到环境和能源的应用产生重大影响,例如推进可再生太阳能燃料的产生。该项目还将为培训高级实验和计算技术的未来科学家和工程师提供机会。 Through their “open lab” focusing on “Solar Hydrogen from Seawater” each summer, local high school students and Teachers will be introduced to the research of this project to enhance public awareness about science.This collaborative research team will develop novel semiconductor-metal nano heterojunctions to investigate the fundamental interactions between exciting generated on semiconductor quantum dots and plasmon produced in plasmonic metal nanostructures, named使用超快激光光谱从动态角度来看,“ plexciton”。这项研究是出于需要解决等离子体金属纳米结构中半导体量子点和等离子之间的电子耦合的挑战所激发的,这是不充分理解的,这阻碍了基于涉及光照明的半导体 - - 金属异质的新兴技术中的应用程序应用。该项目涉及对等离激元金属纳米结构中半导体量子点和等离子的基本因素的系统研究,这些量子点和等离子纳米结构都确定了等离子金属纳米结构中半导体量子点和等离子的电子耦合。这将通过开发设计器连接器分子来控制和增强它们之间的耦合来实现。血浆金属纳米结构中半导体量子点与等离子的电子耦合将通过时间分辨光照明,传输电子显微镜,红外光谱,核磁共振,电化学,电化学,Raman光谱和超级FAMPAST PUMPAST-PUMPE-PROBOBECOPY SPECTRROSCOPOPY SYPRROSCOPOPY SONCEPRROSCOPOPY SODENSSS组合来表征。独特的导电或芳族配体分子将用于等离子体金属纳米结构中的半导体量子点和等离子体稳定,并更改和增强其电子耦合,从而在包括光能应用在内的两个纳米结构之间实现两种纳米结构之间的效应,包括光能转化为电力或化学燃料,例如水电燃料。计算研究将探索等离子金属纳米结构中的半导体量子点 - 质量 - 指导和证实实验研究。该项目还将为培训未来的科学家提供高级实验和计算技术的机会。通过他们的“开放式实验室”,每年夏天都专注于“海水的太阳能氢”,他们将向当地的高中生和老师介绍该项目的研究,以增强公众对科学的认识。该奖项反映了NSF的法定任务,并被认为是通过基金会的知识分子优点和更广泛的影响审查的审查标准来通过评估来诚实的支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Jin Zhang其他文献

Enhanced methanol electro-oxidation activity of electrochemically exfoliated graphene-Pt through polyaniline modification
通过聚苯胺改性增强电化学剥离石墨烯-Pt的甲醇电氧化活性
  • DOI:
    10.1016/j.jelechem.2020.113821
  • 发表时间:
    2020-02
  • 期刊:
  • 影响因子:
    4.5
  • 作者:
    Jin Zhang;Lirui Nan;Wenbo Yue;Xi Chen
  • 通讯作者:
    Xi Chen
Polarization-independent transparency window induced by complementary graphene metasurfaces
互补石墨烯超表面诱导的与偏振无关的透明窗口
  • DOI:
    10.1088/1361-6463/50/1/015106
  • 发表时间:
    2017-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Weibing Lu;Jilong Liu;Jin Zhang;Jian Wang;Zhenguo Liu
  • 通讯作者:
    Zhenguo Liu
Non-Volatile Electrolyte-Gated Transistors Based on GDY/MoS2 with Robust Stability for Low-Power Neuromorphic Computing and Logic-in-Memory
基于 GDY/MoS2 的非易失性电解质门控晶体管,具有强大的稳定性,适用于低功耗神经形态计算和内存逻辑
  • DOI:
    10.1002/adfm.202100069
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    19
  • 作者:
    Bin-Wei Yao;Jiaqiang Li;Xu-Dong Chen;Mei-Xi Yu;Zhi-Cheng Zhang;Yuan Li;Tong-Bu Lu;Jin Zhang
  • 通讯作者:
    Jin Zhang
Finite element method on Shishkin mesh for a singularly perturbed problem with an interior layer
内层奇异摄动问题的 Shishkin 网格有限元方法
  • DOI:
    10.1016/j.aml.2021.107509
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jin Zhang;Xiaoqi Ma;Yanhui Lv
  • 通讯作者:
    Yanhui Lv
Supercloseness of finite element method on a Bakhvalov-type mesh for a singularly perturbed problem with two parameters
具有两个参数的奇摄动问题的 Bakhvalov 型网格有限元方法的超逼近性
  • DOI:
    10.1016/j.apnum.2021.09.010
  • 发表时间:
    2022-01
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Jin Zhang;Yanhui Lv
  • 通讯作者:
    Yanhui Lv

Jin Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Jin Zhang', 18)}}的其他基金

Lower mantle seismic anisotropy and heterogeneities - insight from the thermoelastic properties of CaSiO3 perovskite
下地幔地震各向异性和异质性——从 CaSiO3 钙钛矿热弹性性质的洞察
  • 批准号:
    2240506
  • 财政年份:
    2023
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Continuing Grant
CAREER: Upper mantle anisotropy: the effect of pressure, temperature and hydration
职业:上地幔各向异性:压力、温度和水合作用的影响
  • 批准号:
    2243184
  • 财政年份:
    2022
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Continuing Grant
Chemical Control of Spin and Carrier Dynamics in 2D Hybrid Metal Halide Double Perovskites
二维杂化金属卤化物双钙钛矿中自旋和载流子动力学的化学控制
  • 批准号:
    2203633
  • 财政年份:
    2022
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Standard Grant
CAREER: Upper mantle anisotropy: the effect of pressure, temperature and hydration
职业:上地幔各向异性:压力、温度和水合作用的影响
  • 批准号:
    1847707
  • 财政年份:
    2019
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Continuing Grant
Understanding and Enhancing Electronic Coupling Between Metal Halide Perovskite Quantum Dots Through Surface Molecular Engineering
通过表面分子工程了解和增强金属卤化物钙钛矿量子点之间的电子耦合
  • 批准号:
    1904547
  • 财政年份:
    2019
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Standard Grant
I-Corps: Hollow Metal Nanoparticles: Improving the Sensitivity of Lateral Flow Assays
I-Corps:空心金属纳米颗粒:提高侧向层析检测的灵敏度
  • 批准号:
    1906711
  • 财政年份:
    2018
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Standard Grant
CSEDI: Compositional heterogeneity and seismic anisotropy near the 410 km discontinuity
CSEDI:410公里间断面附近的成分异质性和地震各向异性
  • 批准号:
    1664471
  • 财政年份:
    2017
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Continuing Grant
Elasticity of clinopyroxene (Ca, Na) (Mg, Al, Fe) Si2O6 under Earth's upper mantle conditions
地球上地幔条件下单斜辉石(Ca,Na)(Mg,Al,Fe)Si2O6的弹性
  • 批准号:
    1646527
  • 财政年份:
    2017
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Standard Grant

相似国自然基金

SiC基石墨烯超表面紫外-太赫兹双波段探测器研究
  • 批准号:
    62304187
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
二维杂化双钙钛矿分子铁电体的设计合成与自驱动偏振光电探测性能研究
  • 批准号:
    22305209
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
面向水下崎岖地形辅助探测的仿生蛇机器人流固耦合与自适应控制研究
  • 批准号:
    62303117
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
直接中子探测半导体6LiInP2Se6的晶体生长、微观结构与中子探测器研究
  • 批准号:
    52372011
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
全宽带隙钙钛矿异质结阵列精确构筑及其紫外成像探测性能调控研究
  • 批准号:
    52305623
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: NSF-ANR MCB/PHY: Probing Heterogeneity of Biological Systems by Force Spectroscopy
合作研究:NSF-ANR MCB/PHY:通过力谱探测生物系统的异质性
  • 批准号:
    2412551
  • 财政年份:
    2024
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Standard Grant
Collaborative Research: NSF-ANR MCB/PHY: Probing Heterogeneity of Biological Systems by Force Spectroscopy
合作研究:NSF-ANR MCB/PHY:通过力谱探测生物系统的异质性
  • 批准号:
    2412550
  • 财政年份:
    2024
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Standard Grant
Collaborative Research: PM: High-Z Highly Charged Ions Probing Nuclear Charge Radii, QED, and the Standard Model
合作研究:PM:高阻抗高带电离子探测核电荷半径、QED 和标准模型
  • 批准号:
    2309273
  • 财政年份:
    2023
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Standard Grant
Collaborative Research: ISS: Probing Interfacial Instabilities in Flow Boiling and Condensation via Acoustic Signatures in Microgravity
合作研究:ISS:通过微重力下的声学特征探测流动沸腾和冷凝中的界面不稳定性
  • 批准号:
    2323023
  • 财政年份:
    2023
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Standard Grant
Collaborative Research: Probing internal gravity wave dynamics and dissipation using global observations and numerical simulations
合作研究:利用全球观测和数值模拟探测内部重力波动力学和耗散
  • 批准号:
    2319142
  • 财政年份:
    2023
  • 资助金额:
    $ 28.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了