Collaborative Research: SHF: Medium: Co-Optimizing Computation and Data Transformations for Sparse Tensors

协作研究:SHF:中:稀疏张量的协同优化计算和数据转换

基本信息

  • 批准号:
    2107556
  • 负责人:
  • 金额:
    $ 43万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2022
  • 资助国家:
    美国
  • 起止时间:
    2022-01-01 至 2025-12-31
  • 项目状态:
    未结题

项目摘要

Sparse tensor computations are central to important applications including computer-assisted drug design, fraud detection, and national security. Timely execution of these applications improves user productivity and reduces the energy consumption associated with each execution. Sparse computations are characterized as having inputs where many or most values are zero. To avoid the inefficiency of storing and computing on zero-valued data, applications only store the nonzeros, with auxiliary data structures to recover their locations. As a result, sparse tensor computations exhibit unpredictable memory-access patterns that include indirection through the auxiliary data structures. Consequently, on today’s computer architectures, performance of sparse tensor computations is completely dominated by the movement of data, through the memory system and across nodes. Data movement is expensive both in terms of execution time and energy expenditure. Optimizing data movement of sparse tensor computations as high-performance architectures have become increasingly diverse — conventional parallel architectures, graphics processors used as parallel accelerators and complex memory systems — creates a performance and productivity challenge for software developers who end up writing low-level architecture-specific code for each platform. The proposed approach simultaneously optimizes how data is organized in memory, how the computation is structured to access the data in a way that reduces data movement, and how the computation and data movement make best use of features of the hardware architectures. Since the nonzero structure of the data is unknown until program execution, the approach also examines runtime information in its decisions. The resulting co-optimization strategy enables a cohesive approach for iteratively making scheduling and data representation transformation decisions for a wide range of sparse computations and incorporating runtime adaptations.This project is developing a programming framework that permits high-level specification of a sparse computation and optimizes it to reduce data movement. It composes data representations, data layouts and storage mappings, and parallel schedules for sparse computations. It employs data dependencies, runtime information, and architecture features to fully bind the final generated code. This approach is intended to enable handling sparse tensor computations with dependences such as sparse triangular solve and many other solvers for systems of linear equations, applying reorderings such as Morton ordering on sparse tensors, and late binding of sparse tensor data representations. The novel and most significant aspects of the research include: (1) composable schedule and data transformations, including data layout transformations and storage mapping; (2) inspector synthesis for runtime data transformations between data representations, layouts, and storage mappings, which are composed with external functions; (3) support for data-dependent tensor computations; and, (4) framework abstractions deployed in the MLIR/LLVM compiler.The researchers are strongly committed to broadening participation in computing and have comprehensive plans to engage the underrepresented groups.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
稀疏张量计算是重要应用的核心,包括计算机辅助的药物设计,欺诈检测和国家安全。这些应用程序的及时执行可改善用户的生产,并减少与每个执行相关的能耗。稀疏计算的特征是具有许多或大多数值为零的输入。为了避免在零价值数据上存储和计算的效率低下,应用仅存储非齐射的数据,并使用辅助数据结构来恢复其位置。结果,稀疏张量计算暴露了不可预测的内存访问模式,其中包括通过辅助数据结构进行间接的。因此,在当今的计算机体系结构上,稀疏张量计算的性能完全由数据,通过存储系统和跨节点的移动控制。在执行时间和能源消耗方面,数据移动都很昂贵。优化稀疏张量计算作为高性能体系结构的数据移动已变得越来越多样化 - 传统的并行体系结构,用作并行加速器的图形处理器和复杂的内存系统 - 为最终为每个平台编写低级特定于特定于每个平台的低级体系结构的软件开发人员创造了性能和生产力挑战。所提出的方法简单地优化了如何在内存中组织数据的方式,如何以减少数据移动的方式访问数据,以及计算和数据移动如何充分利用硬件体系结构的功能。由于数据的非零结构在程序执行之前是未知的,因此该方法还检查了决策中的运行时信息。由此产生的合作策略为迭代的调度和数据表示形式转换决策提供了一种凝聚力的方法,并进行了广泛的稀疏计算,并结合了运行时适应。该项目正在开发一个编程框架,允许对稀疏计算的高级规范进行高级规范,以减少数据流动。它构成了数据表示,数据布局和存储映射以及稀疏计算的并行计划。它采用数据依赖性,运行时信息和体系结构功能来完全绑定最终生成的代码。这种方法旨在使稀疏张量计算具有依赖性,例如稀疏三角求解和许多其他求解器,用于线性方程系统,将重新排序(例如莫尔顿订购)在稀疏张力张子上以及稀疏张量数据表示的较晚结合。研究的新颖和最重要的方面包括:(1)可组合的时间表和数据转换,包括数据布局转换和存储映射; (2)检查器合成用于数据表示,布局和存储映射之间的运行时数据转换,这些映射由外部功能组成; (3)支持数据依赖性张量计算; (4)部署在MLIR/LLVM编译器中的框架抽象。研究人员强烈致力于扩大计算机的参与,并制定了全面的计划,以参与代表性不足的组。这奖反映了NSF的法定任务,并通过使用基金会的知识优点和广泛的影响来通过评估来诚实地通过评估来进行评估,以诚实地进行支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Code Synthesis for Sparse Tensor Format Conversion and Optimization
稀疏张量格式转换和优化的代码综合
Polyhedral Specification and Code Generation of Sparse Tensor Contraction with Co-iteration
  • DOI:
    10.1145/3566054
  • 发表时间:
    2022-08
  • 期刊:
  • 影响因子:
    1.6
  • 作者:
    Tuowen Zhao;Tobi Popoola;Mary W. Hall;C. Olschanowsky;M. Strout
  • 通讯作者:
    Tuowen Zhao;Tobi Popoola;Mary W. Hall;C. Olschanowsky;M. Strout
Runtime Composition of Iterations for Fusing Loop-carried Sparse Dependence
用于融合循环携带稀疏依赖的迭代的运行时组合
  • DOI:
    10.1145/3581784.3607097
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cheshmi, Kazem;Strout, Michelle;Mehri Dehnavi, Maryam
  • 通讯作者:
    Mehri Dehnavi, Maryam
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Mary Hall其他文献

Extreme Heterogeneity 2018 - Productive Computational Science in the Era of Extreme Heterogeneity: Report for DOE ASCR Workshop on Extreme Heterogeneity
极端异质性 2018 - 极端异质性时代的高效计算科学:DOE ASCR 极端异质性研讨会报告
  • DOI:
    10.2172/1473756
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    64.8
  • 作者:
    J. Vetter;R. Brightwell;M. Gokhale;P. McCormick;Robert Ross;J. Shalf;K. Antypas;D. Donofrio;T. Humble;Catherine C. Schuman;B. V. Van Essen;Shinjae Yoo;A. Aiken;D. Bernholdt;S. Byna;K. Cameron;Frank Cappello;Barbara M. Chapman;A. Chien;Mary Hall;R. Hartman;Z. Lan;M. Lang;John D. Leidel;Sherry Li;R. Lucas;J. Mellor;Paul Peltz Jr.;T. Peterka;M. Strout;Jeremiah J. Wilke
  • 通讯作者:
    Jeremiah J. Wilke
Seasonal mortality amongst UK occupational pension scheme members 2000–2016
2000-2016 年英国职业养老金计划成员的季节性死亡率
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Mary Hall;Rabia Naqvi
  • 通讯作者:
    Rabia Naqvi
Tu1272 A TISSUE SYSTEMS PATHOLOGY TEST OBJECTIVELY RISK-STRATIFIES PATIENTS WITH BARRETT'S ESOPHAGUS: RESULTS FROM A MULTICENTER U.S. CLINICAL EXPERIENCE
  • DOI:
    10.1016/s0016-5085(23)03356-5
  • 发表时间:
    2023-05-01
  • 期刊:
  • 影响因子:
  • 作者:
    Nicholas A. Villa;Miguel Ordonez-Castellanos;Michael A. Yodice;Christian Smolko;Mary Hall;Rebecca J. Critchley-Thorne;Harshit S. Khara;David L. Diehl
  • 通讯作者:
    David L. Diehl
Biochemical and morphological studies on human kidneys preserved for transplantation.
对保存用于移植的人类肾脏进行生化和形态学研究。
  • DOI:
  • 发表时间:
    1983
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    M. W. Kahng;A. Trifillis;Mary Hall;Annette L. Regec;Benjamin F. Trump
  • 通讯作者:
    Benjamin F. Trump
Performance Engineering: Understanding and Improving thePerformance of Large-Scale Codes
性能工程:理解和提高大规模代码的性能
  • DOI:
  • 发表时间:
    2007
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Bailey;R. Lucas;P. Hovland;Boyana Norris;Kathy Yelick;Daniel Gunter;B. Supinski;Daniel J. Quinlan;Pat Worley;Jeffrey S. Vetter;P. Roth;J. Mellor;A. Snavely;J. Hollingsworth;Daniel A. Reed;Rob Fowler;Ying Zhang;Mary Hall;Jacqueline Chame;Jack J. Dongarra;Shirley Moore
  • 通讯作者:
    Shirley Moore

Mary Hall的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Mary Hall', 18)}}的其他基金

Collaborative Research: PPoSS: Planning: Performance Scalability, Trust, and Reproducibility: A Community Roadmap to Robust Science in High-throughput Applications
协作研究:PPoSS:规划:性能可扩展性、信任和可重复性:高通量应用中稳健科学的社区路线图
  • 批准号:
    2028955
  • 财政年份:
    2020
  • 资助金额:
    $ 43万
  • 项目类别:
    Standard Grant
EAGER: BPCnet: A Broadening Participation Resource Portal
EAGER:BPCnet:扩大参与资源门户
  • 批准号:
    1830364
  • 财政年份:
    2018
  • 资助金额:
    $ 43万
  • 项目类别:
    Standard Grant
SHF: Medium: Collaborative Research: An Inspector/Executor Compilation Framework for Irregular Applications
SHF:Medium:协作研究:针对不规则应用的检查器/执行器编译框架
  • 批准号:
    1564074
  • 财政年份:
    2016
  • 资助金额:
    $ 43万
  • 项目类别:
    Standard Grant
Student Travel Support for the 2011 ACM SIGPLAN PLDI Conference
2011 年 ACM SIGPLAN PLDI 会议的学生旅行支持
  • 批准号:
    1135751
  • 财政年份:
    2011
  • 资助金额:
    $ 43万
  • 项目类别:
    Standard Grant
SHF Small: A Compiler-Based Auto-Tuning Framework for Many-Core Code Generation
SHF Small:用于多核代码生成的基于编译器的自动调优框架
  • 批准号:
    1018881
  • 财政年份:
    2010
  • 资助金额:
    $ 43万
  • 项目类别:
    Continuing Grant
Collaborative Research: DDDAS-SMRP: Optimizing Signal and Image Processing in a Dynamic, Data-Driven Application System
合作研究:DDDAS-SMRP:在动态、数据驱动的应用系统中优化信号和图像处理
  • 批准号:
    0911750
  • 财政年份:
    2008
  • 资助金额:
    $ 43万
  • 项目类别:
    Standard Grant
CRI: CRD: Raising the Standard of Scientific Publishing Through an Experiment Archive
CRI:CRD:通过实验档案提高科学出版标准
  • 批准号:
    0709430
  • 财政年份:
    2007
  • 资助金额:
    $ 43万
  • 项目类别:
    Standard Grant
CSR---AES: Collaborative Research: Intelligent Optimization of Parallel and Distributed Applications (WP2)
CSR---AES:协作研究:并行和分布式应用的智能优化(WP2)
  • 批准号:
    0615412
  • 财政年份:
    2006
  • 资助金额:
    $ 43万
  • 项目类别:
    Continuing Grant
CSR---AES: Collaborative Research: Intelligent Design and Optimization of Parallel and Distributed Applications
CSR---AES:协作研究:并行和分布式应用的智能设计和优化
  • 批准号:
    0509517
  • 财政年份:
    2005
  • 资助金额:
    $ 43万
  • 项目类别:
    Standard Grant
Collaborative Research: DDDAS-SMRP: Optimizing Signal and Image Processing in a Dynamic, Data-Driven Application System
合作研究:DDDAS-SMRP:在动态、数据驱动的应用系统中优化信号和图像处理
  • 批准号:
    0540407
  • 财政年份:
    2005
  • 资助金额:
    $ 43万
  • 项目类别:
    Standard Grant

相似国自然基金

钛基骨植入物表面电沉积镁氢涂层及其促成骨性能研究
  • 批准号:
    52371195
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
CLMP介导Connexin45-β-catenin复合体对先天性短肠综合征的致病机制研究
  • 批准号:
    82370525
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
人工局域表面等离激元高灵敏传感及其系统小型化的关键技术研究
  • 批准号:
    62371132
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
优先流对中俄原油管道沿线多年冻土水热稳定性的影响机制研究
  • 批准号:
    42301138
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
用于稳定锌负极的界面层/电解液双向调控研究
  • 批准号:
    52302289
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: SHF: Medium: Differentiable Hardware Synthesis
合作研究:SHF:媒介:可微分硬件合成
  • 批准号:
    2403134
  • 财政年份:
    2024
  • 资助金额:
    $ 43万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
  • 批准号:
    2331302
  • 财政年份:
    2024
  • 资助金额:
    $ 43万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: LEGAS: Learning Evolving Graphs At Scale
协作研究:SHF:小型:LEGAS:大规模学习演化图
  • 批准号:
    2331301
  • 财政年份:
    2024
  • 资助金额:
    $ 43万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Efficient and Scalable Privacy-Preserving Neural Network Inference based on Ciphertext-Ciphertext Fully Homomorphic Encryption
合作研究:SHF:小型:基于密文-密文全同态加密的高效、可扩展的隐私保护神经网络推理
  • 批准号:
    2412357
  • 财政年份:
    2024
  • 资助金额:
    $ 43万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Medium: Enabling Graphics Processing Unit Performance Simulation for Large-Scale Workloads with Lightweight Simulation Methods
合作研究:SHF:中:通过轻量级仿真方法实现大规模工作负载的图形处理单元性能仿真
  • 批准号:
    2402804
  • 财政年份:
    2024
  • 资助金额:
    $ 43万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了