Collaborative Research: CIF: Medium: Group testing for Real-Time Polymerase Chain Reactions: From Primer Selection to Amplification Curve Analysis
合作研究:CIF:中:实时聚合酶链式反应的分组测试:从引物选择到扩增曲线分析
基本信息
- 批准号:2107344
- 负责人:
- 金额:$ 60万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-10-01 至 2025-09-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Group testing is a screening technique that relies on careful combinatorial mixing and testing of batches of samples. By using group testing instead of individual testing, for most problem settings of practical interest, one is guaranteed significant savings in the number of tests performed and consequently, significant reductions in reporting delays and experimental costs. Group testing is especially desirable when monitoring the spread of infectious diseases such as Covid-19, which requires frequent examinations of massive populations. Although many ad-hoc approaches to group testing for infectious diseases have been put forward, little work has addressed the problem of end-to-end group-testing protocol design, which includes the selection of genetic regions for viral/bacterial identification, mathematical modeling and analysis of the test results and the development of guiding protocols for communal testing strategies. The overarching goals of the project are to determine which group-testing methods can actually mitigate the spread of Covid-19 and other diseases and to what extent, to estimate the reduction in the number of infected individuals achievable through the use of pooled real-time polymerase chain reaction (RT-PCR) tests, and to aid in the employment of Mobile Testing Units that can reach geographically remote regions. Other broader societal impacts include increased readiness for fighting future pandemics and training a new cohort of young researchers on interdisciplinary topics involving machine learning, coding theory and bioinformatics. The project aims to develop specialized machine-learning, combinatorial and information-theoretic methods for (a) identifying genomic regions with predictably low-mutation rates that may be used as amplification primers for gold-standard real-time polymerase chain reactions (RT-PCR) and determining best mixing strategies based on the likelihood of infection; (b) developing adequate models for amplification curves generated by RT-PCR and corresponding test-errors; (c) formulating experimental-protocol-specific non-adaptive and adaptive semiquantitative group testing schemes that account for nonbinary test outcomes; (d) addressing the testing issues associated with high-viral load subjects and heavy-hitter communities; and (e) integrating the mathematical techniques developed into an agent-based model for disease spreading and control in order to assess the potential impact of group testing and recommend effective test-quarantine-retest strategies.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
小组测试是一种筛选技术,依赖于仔细的组合混合和样品批次测试。通过使用小组测试而不是单个测试,对于大多数实际兴趣的问题设置,可以保证在执行的测试数量中节省大量资金,因此,报告延迟和实验成本的大幅减少。当监测传染病(例如Covid-19)的传播时,小组测试尤其是可取的,该传染病需要经常检查大量人群。尽管已经提出了许多用于传染病的小组测试的临时方法,但很少有工作解决了端到端组测试方案设计的问题,其中包括选择用于病毒/细菌鉴定的遗传区域,数学识别,数学建模和测试结果的分析以及用于共同测试策略的指导协议的开发。该项目的总体目标是确定哪种团体测试方法实际上可以减轻COVID-19和其他疾病的传播,并在多大程度上估算通过使用汇集的实时聚合酶链反应(RT-PCR)测试的受感染者数量减少,并帮助您可以在移动测试中雇用地理位置图。其他更广泛的社会影响包括与未来的大流行有关的准备就绪,并培训了一批新的年轻研究人员,涉及涉及机器学习,编码理论和生物信息学的跨学科主题。该项目旨在开发专门的机器学习,组合和信息理论方法,以(a)识别具有可预测的低妇女率的基因组区域,可以用作金标准实时聚合酶链反应(RT-PCR)的放大引物(RT-PCR),并根据感染的可能性确定最佳混合策略; (b)开发足够的模型,用于由RT-PCR和相应的测试轨道产生的扩增曲线; (c)制定实验性特异性非自适应和适应性半定量组测试方案,以解释非二元测试结果; (d)解决与高病毒负荷受试者和重击社区相关的测试问题; (e)将开发到基于疾病的疾病传播和控制的基于代理的模型中,以评估小组测试的潜在影响,并建议有效的测试质量重新测试策略。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的智力优点和更广泛影响的评估来审查Criteria通过评估的支持。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Olgica Milenkovic其他文献
On the generalized Hamming weight enumerators and coset weight distributions of even isodual codes
关于偶等对码的广义汉明权重枚举器和陪集权重分布
- DOI:
10.1109/isit.2001.935925 - 发表时间:
2001 - 期刊:
- 影响因子:0
- 作者:
Olgica Milenkovic - 通讯作者:
Olgica Milenkovic
Detection and Mapping of dsDNA Breaks using Graphene Nanopore Transistor
- DOI:
10.1016/j.bpj.2018.11.1580 - 发表时间:
2019-02-15 - 期刊:
- 影响因子:
- 作者:
Nagendra Athreya;Olgica Milenkovic;Jean-Pierre Leburton - 通讯作者:
Jean-Pierre Leburton
On the triangle clique cover and <math xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline" id="d1e196" altimg="si9.svg" class="math"><msub><mrow><mi>K</mi></mrow><mrow><mi>t</mi></mrow></msub></math> clique cover problems
- DOI:
10.1016/j.disc.2019.111627 - 发表时间:
2020-01-01 - 期刊:
- 影响因子:
- 作者:
Hoang Dau;Olgica Milenkovic;Gregory J. Puleo - 通讯作者:
Gregory J. Puleo
Query-based selection of optimal candidates under the Mallows model
- DOI:
10.1016/j.tcs.2023.114206 - 发表时间:
2023-11-10 - 期刊:
- 影响因子:
- 作者:
Xujun Liu;Olgica Milenkovic;George V. Moustakides - 通讯作者:
George V. Moustakides
Olgica Milenkovic的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Olgica Milenkovic', 18)}}的其他基金
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
- 批准号:
2402815 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Coded String Reconstruction Problems in Molecular Storage
合作研究:CIF:小型:分子存储中的编码串重建问题
- 批准号:
2008125 - 财政年份:2020
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Medium: New Methods for Learning on Hypergraphs for Single-Cell Chromatin Data Analysis
合作研究:CIF:Medium:用于单细胞染色质数据分析的超图学习新方法
- 批准号:
1956384 - 财政年份:2020
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
CIF: Small: Collaborative Research:Leveraging Data Popularity in Distributed Storage Systems via Constrained Design Theory
CIF:小型:协作研究:通过约束设计理论利用分布式存储系统中的数据流行度
- 批准号:
1816913 - 财政年份:2018
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
SemiSynBio: An On-Chip Nanoscale Storage System Using Chimeric DNA
SemiSynBio:使用嵌合 DNA 的片上纳米级存储系统
- 批准号:
1807526 - 财政年份:2018
- 资助金额:
$ 60万 - 项目类别:
Continuing Grant
CIF: Small: Coding for DNA-Based Storage Systems
CIF:小型:基于 DNA 的存储系统的编码
- 批准号:
1618366 - 财政年份:2016
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
CIF: Small: Collaborative Research:Synchronization and Deduplication of Distributed Coded Data: Fundamental Limits and Algorithms
CIF:小型:协作研究:分布式编码数据的同步和重复数据删除:基本限制和算法
- 批准号:
1526875 - 财政年份:2015
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
CIF: Small: Collaborative Research: Ordinal Data Compression
CIF:小型:协作研究:有序数据压缩
- 批准号:
1527636 - 财政年份:2015
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
CIF: Small: Collaborative Research: A General Theory of Group Testing for Genotyping
CIF:小型:协作研究:基因分型群体测试的一般理论
- 批准号:
1218764 - 财政年份:2012
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
CIF: Small: Nonlinear Matrix and Tensor Completion with Applications in Systems Biology
CIF:小:非线性矩阵和张量补全及其在系统生物学中的应用
- 批准号:
1117980 - 财政年份:2011
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
相似国自然基金
支持二维毫米波波束扫描的微波/毫米波高集成度天线研究
- 批准号:62371263
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
腙的Heck/脱氮气重排串联反应研究
- 批准号:22301211
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
水系锌离子电池协同性能调控及枝晶抑制机理研究
- 批准号:52364038
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于人类血清素神经元报告系统研究TSPYL1突变对婴儿猝死综合征的致病作用及机制
- 批准号:82371176
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
FOXO3 m6A甲基化修饰诱导滋养细胞衰老效应在补肾法治疗自然流产中的机制研究
- 批准号:82305286
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
- 批准号:
2403122 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
- 批准号:
2402815 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
- 批准号:
2343599 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
- 批准号:
2343600 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant
Collaborative Research:CIF:Small:Acoustic-Optic Vision - Combining Ultrasonic Sonars with Visible Sensors for Robust Machine Perception
合作研究:CIF:Small:声光视觉 - 将超声波声纳与可见传感器相结合,实现强大的机器感知
- 批准号:
2326905 - 财政年份:2024
- 资助金额:
$ 60万 - 项目类别:
Standard Grant