III: Medium: Collaborative Research: Extracting and Linking AI Artifacts

III:媒介:协作研究:提取和链接人工智能工件

基本信息

  • 批准号:
    2107213
  • 负责人:
  • 金额:
    $ 67万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-12-01 至 2024-11-30
  • 项目状态:
    已结题

项目摘要

The goal of this project is to create a framework for linking all salient aspects of an artificial intelligence (AI) workflow, including data, AI models, AI tools, tasks, and training methodology. The investigators seek to create a framework that takes a holistic view of the AI workflow, and thus, will provide a solution to one of the three key problems identified in the Report of the Office of Science Roundtable on Data for AI: “Address open questions in AI with frameworks for relating data, models, and tasks.” One of the key provisions of federal funding agencies is the creation and open dissemination of research artifacts (e.g., data, models). Although publication-based knowledge is easily reused, data and models are not. Data are the key ingredients to generate AI models. However, the relation between an AI model and the data used to generate it or the task it solves, and the data on which the AI model is tested on, is captured by neither the model nor the data or task. Thus, the investigators seek to create a unified approach to construct this relationship and annotate it. This project will contribute to the broad field of information retrieval and, in particular, to the field of named entity recognition. In this project, the named entities are the datasets, AI models, developing tools, and the names of various methods, such as those employed in training. The investigators will employ a holistic approach to the management of AI research artifacts, i.e., paper-task-data-model-tool, which in turn will produce an innovative way to conceptualize and execute data-AI model search and aggregation. The technical innovation of this project is the creation of novel techniques for entity and relation extraction as well as for entity linking. The project will also contribute to the field of scientific literature mining. The investigators will create novel technology to automatically identify and catalog public AI data and models that increase their reusability. The key insight is that, without the research papers themselves, the research AI artifacts lack the necessary context for reuse. For example, papers describe the role of a dataset (e.g., training or testing) and tell if a model is original or used as a baseline. By automatically inferring task-data-model relations, this project will increase the ability of suggesting artifacts to a new undertaking, thus shortening the time for relevant artifact search. Educationally, this work will involve training of graduate and undergraduate students, particularly encouraging the participation of women and underrepresented groups in the research efforts, and curriculum development.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的目的是创建一个框架,以链接人工智能(AI)工作流程的所有框架,促进数据,AI工具,任务和培训方法。该工作流程以及因此将为AI的报告办公室e -undtel e -on数据中的Toreems身份证明提供解决方案:“将AI中的打开问题与用于关联数据的框架,模型的框架。”资金机构是研究工具的创建和开放式(例如,数据,模型)。生成它或它解决的任务既不是由模型或任务捕获的,因此,调查人员试图创建构建关系的方法。命名实体识别数据集,AI模型,开发工具和各种方法的名称,例如培训中使用的AI研究工具的方法转弯将产生一种创新的方式,以概念化和执行数据搜索和协议自动识别和目录和Sykey的洞察力的技术是,通过研究论文,AI文物缺乏必要的重复使用。模型是原始的或用作基线的,该项目将为您的研究工作与妇女相关联,并在研究工作中涉及新承诺,以提出新的企业。 ,Develumt.t他的奖项反映了NSF'SF'Story Mission,并使用基金会的知识分子优点和更广泛的影响标准通过评估来获得支持。

项目成果

期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
DMDD: A Large-Scale Dataset for Dataset Mentions Detection
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eduard Dragut其他文献

Eduard Dragut的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Eduard Dragut', 18)}}的其他基金

Proto-OKN Theme 1: Knowledge Graph to Support Evaluation and Development of Climate Models
Proto-OKN 主题 1:支持气候模型评估和开发的知识图
  • 批准号:
    2333789
  • 财政年份:
    2023
  • 资助金额:
    $ 67万
  • 项目类别:
    Cooperative Agreement
NSF Convergence Accelerator Track F: America's Fourth Estate at Risk: A System for Mapping the (Local) Journalism Life Cycle to Rebuild the Nation's News Trust
NSF 融合加速器轨道 F:美国第四产业面临风险:绘制(本地)新闻生命周期图以重建国家新闻信任的系统
  • 批准号:
    2137846
  • 财政年份:
    2021
  • 资助金额:
    $ 67万
  • 项目类别:
    Standard Grant
BIGDATA: F: Collaborative Research: Collective Mining of Vertical Social Communities
BIGDATA:F:协同研究:垂直社交社区的集体挖掘
  • 批准号:
    1838145
  • 财政年份:
    2018
  • 资助金额:
    $ 67万
  • 项目类别:
    Standard Grant
BIGDATA: Collaborative Research: F: Streaming Architecture for Continuous Entity Linking in Social Media
BIGDATA:协作研究:F:社交媒体中连续实体链接的流架构
  • 批准号:
    1546480
  • 财政年份:
    2016
  • 资助金额:
    $ 67万
  • 项目类别:
    Standard Grant

相似国自然基金

复合低维拓扑材料中等离激元增强光学响应的研究
  • 批准号:
    12374288
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
中等垂直风切变下非对称型热带气旋快速增强的物理机制研究
  • 批准号:
    42305004
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于挥发性分布和氧化校正的大气半/中等挥发性有机物来源解析方法构建
  • 批准号:
    42377095
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
基于机器学习和经典电动力学研究中等尺寸金属纳米粒子的量子表面等离激元
  • 批准号:
    22373002
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
托卡马克偏滤器中等离子体的多尺度算法与数值模拟研究
  • 批准号:
    12371432
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目

相似海外基金

III : Medium: Collaborative Research: From Open Data to Open Data Curation
III:媒介:协作研究:从开放数据到开放数据管理
  • 批准号:
    2420691
  • 财政年份:
    2024
  • 资助金额:
    $ 67万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: Designing AI Systems with Steerable Long-Term Dynamics
合作研究:III:中:设计具有可操纵长期动态的人工智能系统
  • 批准号:
    2312865
  • 财政年份:
    2023
  • 资助金额:
    $ 67万
  • 项目类别:
    Standard Grant
Collaborative Research: III: MEDIUM: Responsible Design and Validation of Algorithmic Rankers
合作研究:III:媒介:算法排序器的负责任设计和验证
  • 批准号:
    2312932
  • 财政年份:
    2023
  • 资助金额:
    $ 67万
  • 项目类别:
    Standard Grant
Collaborative Research: III: Medium: Algorithms for scalable inference and phylodynamic analysis of tumor haplotypes using low-coverage single cell sequencing data
合作研究:III:中:使用低覆盖率单细胞测序数据对肿瘤单倍型进行可扩展推理和系统动力学分析的算法
  • 批准号:
    2415562
  • 财政年份:
    2023
  • 资助金额:
    $ 67万
  • 项目类别:
    Standard Grant
III: Medium: Collaborative Research: Integrating Large-Scale Machine Learning and Edge Computing for Collaborative Autonomous Vehicles
III:媒介:协作研究:集成大规模机器学习和边缘计算以实现协作自动驾驶汽车
  • 批准号:
    2348169
  • 财政年份:
    2023
  • 资助金额:
    $ 67万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了