Collaborative Research: CIF: Medium: Analysis and Geometry of Neural Dynamical Systems
合作研究:CIF:媒介:神经动力系统的分析和几何
基本信息
- 批准号:2106377
- 负责人:
- 金额:$ 52.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The complexity of modern neural nets, with their millions of parameters and unprecedented computational demands, has been a major hurdle for the conventional approaches which had been successfully applied in machine learning over the past decades. This project aims to develop new mathematical and computational foundations for the analysis and design of these systems through a radically new conceptualization of their architectures as continuous dynamical systems. The key pillar of this framework is the idealization of depth as a continuum of layers and width as a continuum of neurons. Infinitesimal abstractions of this type have successfully unlocked many disciplines throughout the twentieth century, including probability, optimization, control, and many more. This collaborative project involving UIUC and MIT will push the boundaries of the theory and practice of deep learning, while sparking sustained interactions between the communities of electrical engineering, mathematics, statistics, and theoretical computer science. The project will also have broad impacts through a deliberate approach to education and training. The education and outreach activities will include research opportunities for undergraduate students at both institutions, as well as an exchange program to foster the collaboration and exchange of ideas. This project on Analysis and Geometry of Neural Dynamical Systems is developing the mathematical foundations of deep learning by synthesizing tools from probability, statistics, dynamical systems, geometric analysis, partial differential equations, and optimal transport. The research program is articulated around three major directions: (1) continuous models of neural dynamical systems; (2) discretization schemes; and (3) algorithms. The first direction is focusing on characterizing the tradeoffs between the expressive power and complexity of idealized infinitely wide and deep neural nets. The second direction builds on these continuous abstractions to develop, from first principles, mathematically rigorous and practically implementable techniques for analyzing large but finite neural nets. The third direction emphasizes algorithmic and computational aspects, such as the computational complexity of numerical methods, stability, and implicit regularization, using a novel synthesis of analytic and geometric methods developed as part of the project.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
现代神经网的复杂性及其数百万参数和前所未有的计算需求,是过去几十年来成功应用于机器学习的常规方法的一个重大障碍。该项目旨在通过将其架构作为连续动力学系统的彻底新概念化来开发新的数学和计算基础,以分析和设计这些系统。该框架的关键支柱是深度的理想化,作为层和宽度的连续性,作为神经元的连续体。这种类型的无限抽象在整个20世纪成功解锁了许多学科,包括概率,优化,控制等。这个涉及UIUC和MIT的协作项目将突破深度学习理论和实践的界限,同时激发电气工程,数学,统计和理论计算机科学社区之间的持续互动。该项目还将通过故意的教育和培训方法产生广泛的影响。教育和外展活动将包括各机构的本科生的研究机会,以及促进思想的协作和交流的交流计划。关于神经动力学系统分析和几何形状的项目正在通过从概率,统计,动力学系统,几何分析,部分微分方程和最佳传输中综合工具来开发深度学习的数学基础。该研究计划围绕三个主要方向阐明:(1)神经动力学系统的连续模型; (2)离散方案; (3)算法。第一个方向的重点是表征理想化的无限宽和深神经网的表达力与复杂性之间的权衡。第二个方向建立在这些连续的抽象基础上,从第一原则,在数学上严格且实际上可以实现的技术来分析大型但有限的神经网络。第三个方向强调算法和计算方面,例如使用新颖的分析和几何方法的合成数字方法的计算复杂性,稳定性和隐式正则化,作为项目的一部分。本奖反映了NSF的法定任务,并通过对基础的智力效果进行评估,以评估依据,并以评估的评估值得评估。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
GULP: a prediction-based metric between representation
GULP:表示之间基于预测的度量
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Boix-Adsera, Enric;Lawrence, Hannah;Stepaniants, George;Rigollet, Philippe
- 通讯作者:Rigollet, Philippe
An Algorithmic Solution to the Blotto Game using Multi-marginal Couplings
- DOI:10.1145/3490486.3538240
- 发表时间:2022-02
- 期刊:
- 影响因子:0
- 作者:Vianney Perchet;P. Rigollet;Thibaut Le Gouic
- 通讯作者:Vianney Perchet;P. Rigollet;Thibaut Le Gouic
Gaussian discrepancy: A probabilistic relaxation of vector balancing
高斯差异:矢量平衡的概率松弛
- DOI:10.1016/j.dam.2022.08.007
- 发表时间:2022
- 期刊:
- 影响因子:1.1
- 作者:Chewi, Sinho;Gerber, Patrik;Rigollet, Philippe;Turner, Paxton
- 通讯作者:Turner, Paxton
Bures-Wasserstein Barycenters and Low-Rank Matrix Recovery
- DOI:
- 发表时间:2022-10
- 期刊:
- 影响因子:0
- 作者:Tyler Maunu;Thibaut Le Gouic;P. Rigollet
- 通讯作者:Tyler Maunu;Thibaut Le Gouic;P. Rigollet
Variational inference via Wasserstein gradient flows
- DOI:10.48550/arxiv.2205.15902
- 发表时间:2022-05
- 期刊:
- 影响因子:0
- 作者:Marc Lambert;Sinho Chewi;F. Bach;S. Bonnabel;P. Rigollet
- 通讯作者:Marc Lambert;Sinho Chewi;F. Bach;S. Bonnabel;P. Rigollet
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Philippe Rigollet其他文献
THÈSE DE DOCTORAT ÈS MATHÉMATIQUES
数学博士论文
- DOI:
- 发表时间:
2016 - 期刊:
- 影响因子:0
- 作者:
Bodhisattva Sen;Richard Nickl;Vladimir Koltchinskii;Philippe Rigollet;Arnak S. Dalalyan - 通讯作者:
Arnak S. Dalalyan
Philippe Rigollet的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Philippe Rigollet', 18)}}的其他基金
Collaborative Research: Statistical Estimation with Algebraic Structure
合作研究:代数结构的统计估计
- 批准号:
1712596 - 财政年份:2017
- 资助金额:
$ 52.95万 - 项目类别:
Continuing Grant
Statistical and Computational Tradeoffs in High Dimensional Learning
高维学习中的统计和计算权衡
- 批准号:
1541100 - 财政年份:2015
- 资助金额:
$ 52.95万 - 项目类别:
Continuing Grant
CAREER: Large Scale Stochastic Optimization and Statistics
职业:大规模随机优化和统计
- 批准号:
1541099 - 财政年份:2015
- 资助金额:
$ 52.95万 - 项目类别:
Continuing Grant
Statistical and Computational Tradeoffs in High Dimensional Learning
高维学习中的统计和计算权衡
- 批准号:
1317308 - 财政年份:2013
- 资助金额:
$ 52.95万 - 项目类别:
Continuing Grant
CAREER: Large Scale Stochastic Optimization and Statistics
职业:大规模随机优化和统计
- 批准号:
1053987 - 财政年份:2011
- 资助金额:
$ 52.95万 - 项目类别:
Continuing Grant
Optimal Sequential Allocation in Dynamic Environments
动态环境中的最优顺序分配
- 批准号:
0906424 - 财政年份:2009
- 资助金额:
$ 52.95万 - 项目类别:
Standard Grant
相似国自然基金
支持二维毫米波波束扫描的微波/毫米波高集成度天线研究
- 批准号:62371263
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
腙的Heck/脱氮气重排串联反应研究
- 批准号:22301211
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
水系锌离子电池协同性能调控及枝晶抑制机理研究
- 批准号:52364038
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于人类血清素神经元报告系统研究TSPYL1突变对婴儿猝死综合征的致病作用及机制
- 批准号:82371176
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
FOXO3 m6A甲基化修饰诱导滋养细胞衰老效应在补肾法治疗自然流产中的机制研究
- 批准号:82305286
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
- 批准号:
2403122 - 财政年份:2024
- 资助金额:
$ 52.95万 - 项目类别:
Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
- 批准号:
2402815 - 财政年份:2024
- 资助金额:
$ 52.95万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
- 批准号:
2343599 - 财政年份:2024
- 资助金额:
$ 52.95万 - 项目类别:
Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
- 批准号:
2343600 - 财政年份:2024
- 资助金额:
$ 52.95万 - 项目类别:
Standard Grant
Collaborative Research:CIF:Small:Acoustic-Optic Vision - Combining Ultrasonic Sonars with Visible Sensors for Robust Machine Perception
合作研究:CIF:Small:声光视觉 - 将超声波声纳与可见传感器相结合,实现强大的机器感知
- 批准号:
2326905 - 财政年份:2024
- 资助金额:
$ 52.95万 - 项目类别:
Standard Grant