Collaborative Research: CIF: Medium: Harnessing Intrinsic Dynamics for Inherently Privacy-preserving Decentralized Optimization

合作研究:CIF:中:利用内在动力学实现固有隐私保护的去中心化优化

基本信息

  • 批准号:
    2106293
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-06-01 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

Recent advances in communication and networking technologies lead to the emergence and proliferation of distributed interconnected systems such as swarm robotics, sensor networks, smart-grid, the Internet of Things, and collaborative machine-learning systems. A task that is fundamental to the operation of these systems is decentralized optimization, where participating nodes cooperate to minimize an overall objective function that is the sum (or average) of individual nodes’ local objective functions. Moreover, since individual nodes’ local objective functions may bear sensitive information of local nodes such as medical records in collaborative learning and user energy-consumption profiles in a smart grid, in many cases, the decentralized optimization algorithm has to make sure that a participant’s sensitive information is protected from being inferable by other participating nodes or external eavesdroppers. Although plenty of results have been proposed for decentralized optimization, most of these results do not consider the problem of privacy protection. Conventional information-technology privacy mechanisms are inappropriate for decentralized optimization because they either have to compromise the accuracy of optimization (in, e.g., differential-privacy-based approaches) or incur heavy extra computation/communication overhead (in, e.g., cryptography-based privacy approaches). The lack of effective privacy solutions for decentralized optimization not only severely hinders the social adoption of new technologies, but also leads to potential vulnerabilities since stealing private information is usually the basis for sophisticated cybersecurity attacks. Leveraging the iterative properties of decentralized optimization algorithms, the project aims to establish a new privacy-preserving approach for decentralized optimization that neither compromises optimization accuracy nor incurs large computation/communication overhead. Combined with the additional merit of needing no assistance of a trusted central coordinator, the proposed approach is expected to transformatively advance privacy-preservation in networked systems and make impacts in many applications ranging from connected vehicles, swarm robotics, smart grid, sensor networks, to collaborative machine learning. Leveraging control theory, this project seeks to establish methodologies and associated theories for inherently privacy-preserving decentralized optimization by exploiting the intrinsic dynamical properties of decentralized optimization. Besides maintaining optimization accuracy, the dynamics-based privacy approach is also free of encryption, which not only guarantees limited extra computation/communication overhead, but also promises a decentralized implementation without the assistance of any trusted third party or data aggregator. The main research thrusts are to: 1) Develop a privacy framework for dynamical systems that explicitly considers the iterative evolution of information in decentralized optimization; 2) Design perturbations to dynamics that enable privacy without affecting the accuracy of decentralized optimization methods for convex problems, and quantify the effects of the perturbations on convergence speed; 3) Investigate the influence of privacy design on decentralized non-convex optimization and exploit freedom in privacy design to facilitate decentralized non-convex problems; and 4) Evaluate the results using experiments on a multi-robot platform and connected vehicles.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
通信和网络技术的最新进展导致分布式互连系统的出现和扩散,例如群体机器人技术,传感器网络,智能网格,物联网和协作机器学习系统。对于这些系统运行至关重要的任务是分散的优化,其中参与节点协调以最大程度地减少单个节点本地目标函数的总和(或平均)的总体目标函数。此外,由于各个节点的本地目标功能可能会在智能网格中提供诸如协作学习中的医疗记录和用户能量消费型材的敏感信息,因此在许多情况下,分散的优化算法必须确保参与者的敏感信息不受其他参与的节点或外部的evevere eveloppers的推断。尽管已经提出了大量的结果进行分散的优化,但大多数结果并未考虑保护隐私问题。传统的信息技术隐私机制不适合分散优化,因为它们必须损害优化的准确性(例如,基于差异性 - 基于易位性的方法),或者会损害重大的额外计算/通信架空开销(例如,加密基于基于加密基于密码的隐私方法)。缺乏用于分散优化的有效隐私解决方案不仅严重阻碍了新技术的社会采用,而且还会导致潜在的脆弱性,因为窃取私人信息通常是复杂的网络安全攻击的基础。该项目利用分散优化算法的迭代属性,旨在为分散优化建立一种新的隐私保护方法,既不会损害优化准确性,也不会造成大型计算/通信开销。再加上不需要受信任的中央协调员的帮助的额外优点,预计拟议的方法有望在网络系统中改进隐私保护,并在许多应用程序中产生影响,从连接的车辆,Swarm Robotics,Smart Grid,Sensor网络,传感器网络,到协作机器学习。利用控制理论,该项目旨在通过利用分散优化的内在动态属性来建立固有地保护隐私化优化的方法和相关理论。除了保持优化精度外,基于动态的隐私方法还没有加密,这不仅可以保证有限的额外计算/通信开销,而且还承诺在没有任何受信任的第三方或数据聚合器的帮助的情况下将进行分散的实施。主要的研究作用是:1)为动态系统开发隐私框架,该框架明确考虑了在分散优化中信息的迭代演变; 2)设计对动态的扰动,该动力学能够在不影响凸问题的分散优化方法的准确性的情况下,并量化扰动对收敛速度的影响; 3)研究隐私设计对分散的非凸优化和利用隐私设计中的自由的影响,以促进分散的非凸问题; 4)使用在多机器人平台和互联车辆上的实验评估结果。该奖项反映了NSF的法定任务,并通过使用基金会的知识分子优点和更广泛的影响审查标准来评估诚实地通过评估。

项目成果

期刊论文数量(15)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Distributed Optimization with Noisy Information Sharing
A Robust Dynamic Average Consensus Algorithm that Ensures both Differential Privacy and Accurate Convergence
Differentially-private Distributed Algorithms for Aggregative Games with Guaranteed Convergence
保证收敛的聚合博弈的差分私有分布式算法
Quantization Enabled Privacy Protection in Decentralized Stochastic Optimization
Algorithm-Level Confidentiality for Average Consensus on Time-Varying Directed Graphs
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yongqiang Wang其他文献

Ultrafast Excited-State Dynamics of Re(CO)3Cl(dcbpy) in Solution and on Nanocrystalline TiO2 and ZrO2 Thin Films
Re(CO)3Cl(dcbpy) 在溶液中以及纳米晶 TiO2 和 ZrO2 薄膜上的超快激发态动力学
  • DOI:
    10.1021/jp9936648
  • 发表时间:
    2000
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Yongqiang Wang;and John B. Asbury;T. Lian
  • 通讯作者:
    T. Lian
[Generation and characterization of monoclonal antibodies against chicken interleukin 4].
鸡白细胞介素4单克隆抗体的制备及表征。
Ensure Differential Privacy and Convergence Accuracy in Consensus Tracking and Aggregative Games with Coupling Constraints
  • DOI:
    10.48550/arxiv.2210.16395
  • 发表时间:
    2022-10
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yongqiang Wang
  • 通讯作者:
    Yongqiang Wang
A Compact Branch-Line Coupler Using Substrate Integrated Suspended Line Technology
采用基板集成悬线技术的紧凑型支线耦合器
Pulse-Coupled Synchronization With Guaranteed Clock Continuity
保证时钟连续性的脉冲耦合同步

Yongqiang Wang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yongqiang Wang', 18)}}的其他基金

CIF: Small: Ensuring Accuracy in Differentially Private Decentralized Optimization
CIF:小:确保差分隐私去中心化优化的准确性
  • 批准号:
    2334449
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
FRR: Collaborative Research: Collaborative Learning for Multi-robot Systems with Model-enabled Privacy Protection and Safety Supervision
FRR:协作研究:具有模型支持的隐私保护和安全监督的多机器人系统协作学习
  • 批准号:
    2219487
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CIF: Small: Deep Stochasticity for Private Collaborative Deep Learning
CIF:小:私人协作深度学习的深度随机性
  • 批准号:
    2215088
  • 财政年份:
    2022
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Encrypted control for privacy-preserving and secure cyber-physical systems
隐私保护和安全网络物理系统的加密控制
  • 批准号:
    1912702
  • 财政年份:
    2019
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
EAGER: Control Theory for Real-time Privacy-preserving Consensus Control of Engineering Networks
EAGER:工程网络实时隐私保护共识控制的控制理论
  • 批准号:
    1824014
  • 财政年份:
    2018
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
CICI: RSARC: Secure Time for Cyberinfrastructure Security
CICI:RSARC:网络基础设施安全的安全时间
  • 批准号:
    1738902
  • 财政年份:
    2017
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
STTR Phase I: Eco-Friendly Mass Production of Highly Conductive Graphene Sheets with Controlled Structures
STTR第一阶段:结构可控的高导电石墨烯片的环保大规模生产
  • 批准号:
    1346496
  • 财政年份:
    2014
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
STTR Phase I: Surface- and Structural Engineering of Colloidal Quantum Dots Towards Efficient and
STTR 第一阶段:胶体量子点的表面和结构工程,以实现高效和
  • 批准号:
    1010491
  • 财政年份:
    2010
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
STTR Phase I: Magnetic Nanoparticle Microfluidics for High Efficient Capture, Separation and Concetration of Foodborne Pathogens
STTR 第一阶段:用于高效捕获、分离和浓缩食源性病原体的磁性纳米颗粒微流体
  • 批准号:
    0810626
  • 财政年份:
    2008
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
SBIR Phase II: Development of Cadmium-Free, Water-Soluble and Multicolor Quantum Dots by Chemical Doping
SBIR 第二阶段:通过化学掺杂开发无镉、水溶性和多色量子点
  • 批准号:
    0823040
  • 财政年份:
    2008
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant

相似国自然基金

支持二维毫米波波束扫描的微波/毫米波高集成度天线研究
  • 批准号:
    62371263
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
腙的Heck/脱氮气重排串联反应研究
  • 批准号:
    22301211
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
水系锌离子电池协同性能调控及枝晶抑制机理研究
  • 批准号:
    52364038
  • 批准年份:
    2023
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
基于人类血清素神经元报告系统研究TSPYL1突变对婴儿猝死综合征的致病作用及机制
  • 批准号:
    82371176
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
FOXO3 m6A甲基化修饰诱导滋养细胞衰老效应在补肾法治疗自然流产中的机制研究
  • 批准号:
    82305286
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: CIF: Medium: Snapshot Computational Imaging with Metaoptics
合作研究:CIF:Medium:Metaoptics 快照计算成像
  • 批准号:
    2403122
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF-Medium: Privacy-preserving Machine Learning on Graphs
合作研究:CIF-Medium:图上的隐私保护机器学习
  • 批准号:
    2402815
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
  • 批准号:
    2343599
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research: CIF: Small: Mathematical and Algorithmic Foundations of Multi-Task Learning
协作研究:CIF:小型:多任务学习的数学和算法基础
  • 批准号:
    2343600
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
Collaborative Research:CIF:Small:Acoustic-Optic Vision - Combining Ultrasonic Sonars with Visible Sensors for Robust Machine Perception
合作研究:CIF:Small:声光视觉 - 将超声波声纳与可见传感器相结合,实现强大的机器感知
  • 批准号:
    2326905
  • 财政年份:
    2024
  • 资助金额:
    $ 50万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了