CIF: Small: Statistically Optimal Subsampling for Big Data and Rare Events Data
CIF:小:大数据和稀有事件数据的统计最佳子采样
基本信息
- 批准号:2105571
- 负责人:
- 金额:$ 39.95万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-15 至 2025-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The ever-increasing amounts of big data offer unprecedented opportunities for advancing knowledge across scientific fields. However, traditional analyses of big data involve high computational costs and often require supercomputers. This project aims to develop computational tools that empower practitioners to analyze big data without dependency on supercomputers. It produces optimal algorithms that extract the maximum amount of information from massive data with limited computing resources. Rare-events data are common in big data where the numbers of interested events are relatively small although available full data are massive. This project is identifying conditions when the majority data can be discarded without any information loss, and developing methods for valid analysis and appropriate decision-making with rare events data. Education is another key component of the project, with a significant focus on classroom integration and next-generation workforce training, aiming to attract and equip a broader range of participants, especially underrepresented groups, to the field of computational data science.Subsampling has demonstrated a pervasive potential to enable better use of a fixed amount of computing resources. However, existing investigations focus on calculations of the collected data, and available results are not suitable for statistical inference on the underlying model. This project develops and expands the subsampling technique in the following directions: 1) It establishes a framework to determine statistically optimal subsampling probabilities by examining statistical distributional properties of subsample estimators; 2) it derives the maximum subsampled conditional likelihood estimator that has the smallest asymptotic variance among a large class of asymptotically unbiased estimators; and 3) it obtains new theoretical insights on rare-events data and challenges a long-standing view of underestimated probabilities for rare events. The research is a significant addition to the field of big data subsampling and provides tools that are widely applicable to facilitate practical inference and decision-making. It also answers important questions that are essential for extracting valid information from rare-events data.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
不断增加的大数据为推进科学领域的知识提供了前所未有的机会。然而,传统的大数据分析涉及较高的计算成本,并且通常需要超级计算机。该项目旨在开发计算工具,使从业者能够在不依赖超级计算机的情况下分析大数据。它产生最优算法,利用有限的计算资源从海量数据中提取最大量的信息。稀有事件数据在大数据中很常见,尽管可用的完整数据很大,但感兴趣事件的数量相对较少。该项目正在确定可以丢弃大多数数据而不丢失任何信息的条件,并开发利用罕见事件数据进行有效分析和适当决策的方法。教育是该项目的另一个关键组成部分,重点关注课堂整合和下一代劳动力培训,旨在吸引和装备更广泛的参与者,特别是代表性不足的群体,进入计算数据科学领域。二次抽样已经证明了能够更好地利用固定数量的计算资源的普遍潜力。然而,现有的研究重点是对收集的数据进行计算,现有的结果不适合对基础模型进行统计推断。该项目在以下方向发展和扩展了子采样技术: 1)建立了一个框架,通过检查子样本估计量的统计分布特性来确定统计上最优的子采样概率; 2) 导出一大类渐近无偏估计量中渐近方差最小的最大子采样条件似然估计量; 3)它获得了关于罕见事件数据的新理论见解,并挑战了长期以来低估罕见事件概率的观点。该研究是大数据子采样领域的重要补充,并提供了广泛适用的工具来促进实际推理和决策。它还回答了从罕见事件数据中提取有效信息所必需的重要问题。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(16)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Nonuniform Negative Sampling and Log Odds Correction with Rare Events Data
- DOI:
- 发表时间:2021-10
- 期刊:
- 影响因子:0
- 作者:HaiYing Wang;Aonan Zhang;Chong Wang
- 通讯作者:HaiYing Wang;Aonan Zhang;Chong Wang
Optimal Poisson Subsampling for Softmax Regression
- DOI:10.1007/s11424-023-1179-z
- 发表时间:2023-08
- 期刊:
- 影响因子:2.1
- 作者:Yaqiong Yao;Jiahui Zou;Haiying Wang
- 通讯作者:Yaqiong Yao;Jiahui Zou;Haiying Wang
A Scalable Frequentist Model Averaging Method
一种可扩展的频率模型平均方法
- DOI:10.1080/07350015.2022.2116442
- 发表时间:2022
- 期刊:
- 影响因子:3
- 作者:Zhu, Rong;Wang, Haiying;Zhang, Xinyu;Liang, Hua
- 通讯作者:Liang, Hua
A note on centering in subsample selection for linear regression
- DOI:10.1002/sta4.525
- 发表时间:2022-09
- 期刊:
- 影响因子:1.7
- 作者:Hai Ying Wang
- 通讯作者:Hai Ying Wang
Sampling With Replacement vs Poisson Sampling: A Comparative Study in Optimal Subsampling
- DOI:10.1109/tit.2022.3176955
- 发表时间:2022-05
- 期刊:
- 影响因子:2.5
- 作者:Jing Wang;Jiahui Zou;HaiYing Wang
- 通讯作者:Jing Wang;Jiahui Zou;HaiYing Wang
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
HaiYing Wang其他文献
Adaptive LASSO for varying-coefficient partially linear measurement error models
用于变系数部分线性测量误差模型的自适应 LASSO
- DOI:
10.1016/j.jspi.2012.07.008 - 发表时间:
2013 - 期刊:
- 影响因子:0.9
- 作者:
HaiYing Wang;Guohua Zou;Alan T.K. Wan - 通讯作者:
Alan T.K. Wan
Logistic Regression for Massive Data with Rare Events
具有稀有事件的海量数据的逻辑回归
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
HaiYing Wang - 通讯作者:
HaiYing Wang
Inaugural Editorial. Can We Achieve Our Mission: Fast, Accessible, Cutting-edge, and Top-quality?
首届社论。
- DOI:
- 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
Colin O. Wu;Ming;Min;HaiYing Wang;Jing Wu - 通讯作者:
Jing Wu
HaiYing Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('HaiYing Wang', 18)}}的其他基金
Collaborative Research: Information-Based Subdata Selection Inspired by Optimal Design of Experiments
协作研究:受实验优化设计启发的基于信息的子数据选择
- 批准号:
1812013 - 财政年份:2018
- 资助金额:
$ 39.95万 - 项目类别:
Standard Grant
相似国自然基金
诊疗一体化PS-Hc@MB协同训练介导脑小血管病康复的作用及机制研究
- 批准号:82372561
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
非小细胞肺癌MECOM/HBB通路介导血红素代谢异常并抑制肿瘤起始细胞铁死亡的机制研究
- 批准号:82373082
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于胆碱能皮层投射纤维探讨脑小血管病在帕金森病步态障碍中的作用及机制研究
- 批准号:82301663
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
关于丢番图方程小素数解上界估计的研究
- 批准号:12301005
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
嗅球小胶质细胞P2X7受体在变应性鼻炎发生帕金森病样改变中的作用与机制研究
- 批准号:82371119
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
RI: Small: Statistically Sound and Computationally Efficient Data Analysis Through Algorithmic Applications of Rademacher Averages
RI:小:通过 Rademacher 平均值的算法应用进行统计上合理且计算高效的数据分析
- 批准号:
1813444 - 财政年份:2018
- 资助金额:
$ 39.95万 - 项目类别:
Continuing Grant
SHF: Small: Virtual Probe: A Statistically Optimal Framework for Affordable Monitoring and Tuning of Large-Scale Digital Integrated Circuits
SHF:小型:虚拟探针:经济实惠的大规模数字集成电路监控和调谐的统计最佳框架
- 批准号:
0915912 - 财政年份:2009
- 资助金额:
$ 39.95万 - 项目类别:
Standard Grant
Monoclonal antibody mediated biomarker discovery for alcohol-induced liver damage
单克隆抗体介导的酒精性肝损伤生物标志物的发现
- 批准号:
7414655 - 财政年份:2008
- 资助金额:
$ 39.95万 - 项目类别: