Machine Learning–Enhanced Multiscale Modeling of Spatially Tailored Materials

机器学习 - 空间定制材料的增强多尺度建模

基本信息

  • 批准号:
    2104383
  • 负责人:
  • 金额:
    $ 48.64万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2025-02-28
  • 项目状态:
    未结题

项目摘要

Spatially tailored materials are metal-ceramic composites consisting of two or more different materials. The volume fraction of each material continuously changes in space. Compared to traditional composites, these composites offer advantages over traditional ones for they provide more opportunities to designers to fashion their performance for the operating conditions and environment. Since these composites have features spanning multiple length scales, it is usually necessary to develop predictive models capable of describing physical phenomena at different levels of resolution, e.g., at the nanoscale as well as the microscale. This award supports the development of an innovative multiscale method, enhanced by machine learning techniques and supported by experimental data, to investigate the mechanics of spatially tailored materials under mechanical and thermal loading. The proposed method will accelerate the design of the next generation of metal-ceramic composites for use in the automotive, aerospace, and biomedical industries. In addition, the award will leverage university programs to support: (1) undergraduate teaching and learning in data science and engineering; (2) recruitment of female, underrepresented minority, and LGBTQ students; and 3) outreach to K-12 students. Current state-of-the-art practices for numerical modeling of spatially tailored materials use the principles of micromechanics to bridge the gap from the lower scales under consideration to the macroscale. However, most methods cannot account for the molecular interfacial interactions and the microstructure uncertainties, both of which must be considered to accurately predict material responses at the higher length scales. And even when these considerations are addressed, it results in the difficulty of explicitly deriving effective material properties and constitutive or failure relationships. This project utilizes data science techniques and machine learning to overcome these challenges in the multiscale material modeling of a spatially tailored titanium alloy-titanium diboride metal-ceramic material system. The project will lead to the following general outcomes: (1) development of a data-enabled approach in hierarchical multiscale modeling to link and interface information (including uncertainties) across multiple length and time scales; (2) development of an efficient way to generate homogenized microscale models of heterogeneous composites that account for microstructure uncertainties; (3) development of an adaptive machine learning framework that updates with data accumulation; and (4) design of multiscale experiments under a variety of thermomechanical loading conditions.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
量身定制的材料是由两种或更多不同材料组成的金属陶瓷复合材料。每种材料的体积分数不断变化。与传统的复合材料相比,这些复合材料比传统的复合材料提供了优势,因为它们为设计师提供了更多的机会,可以在运营条件和环境中塑造其性能。由于这些复合材料具有跨越多个长度尺度的特征,因此通常有必要开发能够在不同级别分辨率(例如,在纳米级和微观上)描述物理现象的预测模型。该奖项支持了一种创新的多尺寸方法的开发,该方法通过机器学习技术增强并得到了实验数据的支持,以研究机械和热载荷下的空间量身定制材料的机制。所提出的方法将加速下一代金属陶瓷复合材料的设计,用于汽车,航空航天和生物医学行业。此外,该奖项将利用大学计划支持:(1)数据科学和工程学的本科教学; (2)招募女性,代表性不足的少数民族和LGBTQ学生; 3)向K-12学生推广。 空间量身定制材料的数值建模的当前最新实践使用微力学的原理来弥合从所考虑的下部尺度到宏观的差距。但是,大多数方法无法解释分子界面相互作用和微结构不确定性,必须考虑两者以准确预测更高长度的材料响应。即使解决了这些考虑,它也会导致明确得出有效的材料特性以及本构或失败关系的困难。该项目利用数据科学技术和机器学习来克服这些挑战,这些挑战是在空间量身定制的钛合金二烷二苯胺金属陶瓷材料系统的多尺度材料建模中。该项目将导致以下一般成果:(1)在层次多长度和时间范围内开发层次多尺度建模中启用数据的方法,以链接和接口信息(包括不确定性); (2)开发一种有效的方法来产生均质的复合材料的均质微观模型,以解释微观结构不确定性; (3)开发随着数据积累更新的自适应机学习框架; (4)在各种热机械加载条件下设计多尺度实验的设计。该奖项反映了NSF的法定任务,并且使用基金会的知识分子优点和更广泛的影响评估标准,被认为值得通过评估来获得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Investigating the strength of Ti/TiB interfaces at multiple scales using density functional theory, molecular dynamics, and cohesive zone modeling
  • DOI:
    10.1016/j.ceramint.2022.07.259
  • 发表时间:
    2022-08
  • 期刊:
  • 影响因子:
    5.2
  • 作者:
    S. Attarian;S. Xiao
  • 通讯作者:
    S. Attarian;S. Xiao
Multiscale Modeling of Metal-Ceramic Spatially Tailored Materials via Gaussian Process Regression and Peridynamics
通过高斯过程回归和近场动力学对金属陶瓷空间定制材料进行多尺度建模
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Shaoping Xiao其他文献

Model-free reinforcement learning for motion planning of autonomous agents with complex tasks in partially observable environments
用于在部分可观察环境中执行复杂任务的自主代理的运动规划的无模型强化学习
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Junchao Li;Mingyu Cai;Zhen Kan;Shaoping Xiao
  • 通讯作者:
    Shaoping Xiao
Molecular dynamics modeling and simulation of lubricant between sliding solids
滑动固体间润滑剂的分子动力学建模与模拟
Reinforcement learning-based motion planning in partially observable environments under ethical constraints
道德约束下部分可观察环境中基于强化学习的运动规划
  • DOI:
    10.1007/s43681-024-00441-6
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Junchao Li;Mingyu Cai;Shaoping Xiao
  • 通讯作者:
    Shaoping Xiao
Peridynamics with Corrected Boundary Conditions and Its Implementation in Multiscale Modeling of Rolling Contact Fatigue
修正边界条件的近场动力学及其在滚动接触疲劳多尺度建模中的实现
  • DOI:
    10.1142/s1756973718410032
  • 发表时间:
    2019-05
  • 期刊:
  • 影响因子:
    1.5
  • 作者:
    Mir Ali Ghaffari;Yanjue Gong;Siamak Attarian;Shaoping Xiao
  • 通讯作者:
    Shaoping Xiao
Intelligent Agricultural Management Considering N2O Emission and Climate Variability with Uncertainties
考虑N2O排放和不确定性气候变化的智能农业管理
  • DOI:
    10.48550/arxiv.2402.08832
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhaoan Wang;Shaoping Xiao;Jun Wang;Ashwin Parab;Shivam Patel
  • 通讯作者:
    Shivam Patel

Shaoping Xiao的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Shaoping Xiao', 18)}}的其他基金

BRITE Pivot: Learning-based Optimal Control of Streamflow with Potentially Infeasible Time-bound Constraints for Flood Mitigation
BRITE Pivot:基于学习的水流优化控制,具有可能不可行的防洪时限约束
  • 批准号:
    2226936
  • 财政年份:
    2023
  • 资助金额:
    $ 48.64万
  • 项目类别:
    Standard Grant
SGER: A Nanoelectromechanical Design for Carbon Nanotube-Based Memory Cells at Finite Temperatures
SGER:有限温度下基于碳纳米管的存储单元的纳米机电设计
  • 批准号:
    0630153
  • 财政年份:
    2006
  • 资助金额:
    $ 48.64万
  • 项目类别:
    Standard Grant

相似国自然基金

鲁棒增强的分布式机器学习隐私保护关键技术研究
  • 批准号:
    62302360
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
机器学习增强的多尺度固体电解质相界面结构预测
  • 批准号:
    22303058
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于机器学习和增强采样的含能材料冲击爆轰机理的理论研究
  • 批准号:
    12362031
  • 批准年份:
    2023
  • 资助金额:
    31 万元
  • 项目类别:
    地区科学基金项目
水声小样本场景中机器学习信道估计机理及数据增强方法研究
  • 批准号:
    62301551
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
机器学习增强的各向异性曲面结构等几何建模与分析优化技术
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目

相似海外基金

AI4PEX: Artificial Intelligence and Machine Learning for Enhanced Representation of Processes and Extremes in Earth System Models
AI4PEX:人工智能和机器学习,用于增强地球系统模型中过程和极值的表示
  • 批准号:
    10103109
  • 财政年份:
    2024
  • 资助金额:
    $ 48.64万
  • 项目类别:
    EU-Funded
Presymptom: development of a novel machine-learning-derived diagnostic test to rule out infection to enable enhanced clinical care and better targeted anti-microbial use
症状前:开发一种新型的机器学习诊断测试来排除感染,从而加强临床护理和更有针对性的抗菌药物使用
  • 批准号:
    10089281
  • 财政年份:
    2024
  • 资助金额:
    $ 48.64万
  • 项目类别:
    Investment Accelerator
CAREER: Integrating Graph Theory based Networks with Machine Learning for Enhanced Process Synthesis and Design
职业:将基于图论的网络与机器学习相集成以增强流程综合和设计
  • 批准号:
    2339588
  • 财政年份:
    2024
  • 资助金额:
    $ 48.64万
  • 项目类别:
    Continuing Grant
PFI-RP: Resilient and Energy-Efficient Memory Chips for Enhanced Mobile AI and Personalized Machine Learning
PFI-RP:用于增强移动人工智能和个性化机器学习的弹性和节能内存芯片
  • 批准号:
    2345655
  • 财政年份:
    2024
  • 资助金额:
    $ 48.64万
  • 项目类别:
    Standard Grant
Artificial Intelligence and Machine Learning for Enhanced Representation of Processes and Extremes in Earth System Models (AI4PEX)
人工智能和机器学习增强地球系统模型中过程和极值的表示(AI4PEX)
  • 批准号:
    10093450
  • 财政年份:
    2024
  • 资助金额:
    $ 48.64万
  • 项目类别:
    EU-Funded
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了