CDSE: Collaborative: Cyber Infrastructure to Enable Computer Vision Applications at the Edge Using Automated Contextual Analysis
CDSE:协作:使用自动上下文分析在边缘启用计算机视觉应用的网络基础设施
基本信息
- 批准号:2104377
- 负责人:
- 金额:$ 10万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-01 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Digital cameras are deployed as network edge devices, gathering visual data for such tasks as autonomous driving, traffic analysis, and wildlife observation. Analyzing the vast amount of visual data is a challenge. Existing computer vision methods require fast computers that are beyond the computational capabilities of many edge devices. This project aims to improve the efficiency of computer vision methods so that they can run on battery-powered edge devices. Based on the visual data and complementary metadata (e.g., geographical location, local time), the project first extracts contextual information (such as a city street is expected to be busy at rush hour). The contextual information can help assist determine whether analysis results are correct. For example, a wild animal is not expected on a city street. Moreover, contextual information can improve efficiency. Only certain pixels need to be analyzed (pixels on the road are useful for detecting cars, while pixels in the sky are not) and this can significantly reduce the amount of computation, thus enabling analysis on edge devices. This project constructs a cyberinfrastructure for three services: (1) understand contextual information to reduce the search space of analysis methods, (2) reduce computation by considering only necessary pixels, and (3) automate evaluation of analysis results based on the contextual information without human effort.Understanding contextual information is achieved by using background segmentation, GPS-location-dependent logic, and image depth maps. Background analysis leverages semantic segmentation and analysis over time to identify the background pixels and then generate inference rules via a background-implies-foreground relationship. If a pixel is consistently marked by the same semantic label across a long period of time, this pixel is classified as a background pixel. The background information can infer certain types of foreground objects. For example, if the background is city streets, the foreground objects can be vehicles or pedestrians; if a bison is detected, this is likely a mistake. This project processes only the foreground pixels by adding masks to the neural network layers. Masking convolution can substantially reduce the amount of computation with no loss of accuracy and no additional training is needed. Meanwhile, hierarchical neural networks can skip sections of a model based on context. For example, pixels in the sky only need to be processed by the hierarchy nodes that classify airplanes. The project provides an online service that can accept input data and analysis programs for automatic evaluation of the programs, without human created labels. The evaluation is based on the correlations of background and foreground objects.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
数码相机被部署为网络边缘设备,收集视觉数据,以进行自动驾驶,交通分析和野生动植物观察等任务。分析大量视觉数据是一个挑战。现有的计算机视觉方法需要快速计算机,这些计算机超出了许多边缘设备的计算功能。该项目旨在提高计算机视觉方法的效率,以便它们可以在电池供电的边缘设备上运行。根据视觉数据和互补的元数据(例如,地理位置,当地时间),该项目首先提取上下文信息(例如,城市街有望在高峰时段忙碌)。上下文信息可以帮助确定分析结果是否正确。例如,预计在城市街上不会发生野生动物。此外,上下文信息可以提高效率。 仅需要分析某些像素(道路上的像素可用于检测汽车,而天空中的像素不是),这可以大大减少计算量,从而在边缘设备上进行分析。 This project constructs a cyberinfrastructure for three services: (1) understand contextual information to reduce the search space of analysis methods, (2) reduce computation by considering only necessary pixels, and (3) automate evaluation of analysis results based on the contextual information without human effort.Understanding contextual information is achieved by using background segmentation, GPS-location-dependent logic, and image depth maps. 背景分析利用语义细分和分析随着时间的流逝,以识别背景像素,然后通过背景进化 - 前景关系生成推理规则。如果像素在很长一段时间内一直以相同的语义标签标记,则该像素被归类为背景像素。背景信息可以推断某些类型的前景对象。例如,如果背景是城市街道,前景物体可以是车辆或行人。如果检测到野牛,这可能是一个错误。该项目仅通过在神经网络层中添加口罩来处理前景像素。掩盖卷积可以大大减少计算量,而无需损失准确性,也不需要额外的训练。同时,分层神经网络可以根据上下文跳过模型的部分。例如,天空中的像素只需要通过对飞机进行分类的层次结构节点处理。该项目提供了一项在线服务,可以在没有人类创建的标签的情况下接受输入数据和分析程序,以自动评估程序。该评估基于背景和前景对象的相关性。该奖项反映了NSF的法定任务,并被认为是通过基金会的知识分子优点和更广泛的影响审查标准来评估值得支持的。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Irrelevant Pixels are Everywhere: Find and Exclude Them for More Efficient Computer Vision
不相关的像素无处不在:查找并排除它们以提高计算机视觉效率
- DOI:10.1109/aicas54282.2022.9870012
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Tung, Caleb;Goel, Abhinav;Hu, Xiao;Eliopoulos, Nick;Amobi, Emmanuel S.;Thiruvathukal, George K.;Chaudhary, Vipin;Lu, Yung-Hsiang
- 通讯作者:Lu, Yung-Hsiang
共 1 条
- 1
Vipin Chaudhary其他文献
Applying graphics processor units to Monte Carlo dose calculation in radiation therapy
将图形处理器单元应用于放射治疗中的蒙特卡罗剂量计算
- DOI:
- 发表时间:20102010
- 期刊:
- 影响因子:0.9
- 作者:Mohammad Reza Bakhtiari;H. Malhotra;Jones;Vipin Chaudhary;John Paul Walters;D. NazarethMohammad Reza Bakhtiari;H. Malhotra;Jones;Vipin Chaudhary;John Paul Walters;D. Nazareth
- 通讯作者:D. NazarethD. Nazareth
5th CARS/SPIE Joint Workshop on Surgical PACS and the Digital Operating Room
第五届 CARS/SPIE 外科 PACS 和数字手术室联合研讨会
- DOI:10.1007/s11548-006-0032-x10.1007/s11548-006-0032-x
- 发表时间:20062006
- 期刊:
- 影响因子:3
- 作者:H. Lufei;Weisong Shi;Vipin ChaudharyH. Lufei;Weisong Shi;Vipin Chaudhary
- 通讯作者:Vipin ChaudharyVipin Chaudhary
Visual Concept Networks: A Graph-Based Approach to Detecting Anomalous Data in Deep Neural Networks ⋆
视觉概念网络:一种基于图的方法来检测深度神经网络中的异常数据 ⋆
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:Debargha Ganguly;Debayan Gupta;Vipin ChaudharyDebargha Ganguly;Debayan Gupta;Vipin Chaudhary
- 通讯作者:Vipin ChaudharyVipin Chaudhary
INTERVERTEBRAL DISC DETECTION IN X-RAY IMAGES USING FASTER R-CNN : A DEEP LEARNING APPROACH
使用 FASTER R-CNN 检测 X 射线图像中的椎间盘:一种深度学习方法
- DOI:
- 发表时间:20162016
- 期刊:
- 影响因子:0
- 作者:Ruhan Sa;William Owens;Raymond Wiegand;Mark Studin;Donald Capoferri;Alexander Greaux;Robert Rattray;Adam Hutton;John Cintineo;Vipin ChaudharyRuhan Sa;William Owens;Raymond Wiegand;Mark Studin;Donald Capoferri;Alexander Greaux;Robert Rattray;Adam Hutton;John Cintineo;Vipin Chaudhary
- 通讯作者:Vipin ChaudharyVipin Chaudhary
Creating intelligent cyberinfrastructure for democratizing AI
创建智能网络基础设施以实现人工智能民主化
- DOI:10.1002/aaai.1216610.1002/aaai.12166
- 发表时间:20242024
- 期刊:
- 影响因子:0
- 作者:Dhabaleswar K. Panda;Vipin Chaudhary;Eric Fosler‐Lussier;R. Machiraju;Amitava Majumdar;Beth Plale;R. Ramnath;P. Sadayappan;Neelima Savardekar;Karen TomkoDhabaleswar K. Panda;Vipin Chaudhary;Eric Fosler‐Lussier;R. Machiraju;Amitava Majumdar;Beth Plale;R. Ramnath;P. Sadayappan;Neelima Savardekar;Karen Tomko
- 通讯作者:Karen TomkoKaren Tomko
共 5 条
- 1
Vipin Chaudhary的其他基金
Collaborative Research: SCIPE: Interdisciplinary Research Support Community for Artificial Intelligence and Data Sciences
合作研究:SCIPE:人工智能和数据科学跨学科研究支持社区
- 批准号:23209522320952
- 财政年份:2023
- 资助金额:$ 10万$ 10万
- 项目类别:Standard GrantStandard Grant
Collaborative Research: EAGER: Automating CI Configuration Troubleshooting with Bayesian Group Testing
协作研究:EAGER:使用贝叶斯组测试自动化 CI 配置故障排除
- 批准号:23333252333325
- 财政年份:2023
- 资助金额:$ 10万$ 10万
- 项目类别:Standard GrantStandard Grant
Collaborative Research: PPoSS: Planning: Software Stack for Scalable Heterogeneous NISQ Cluster
协作研究:PPoSS:规划:可扩展异构 NISQ 集群的软件堆栈
- 批准号:22169232216923
- 财政年份:2022
- 资助金额:$ 10万$ 10万
- 项目类别:Standard GrantStandard Grant
Building Collaborations: A Workshop Facilitating US-India Bilateral Research Collaborations
建立合作:促进美印双边研究合作的研讨会
- 批准号:22193262219326
- 财政年份:2022
- 资助金额:$ 10万$ 10万
- 项目类别:Standard GrantStandard Grant
MRI: Acquisition of Artificial Intelligence Super Computer (AISC) for Accelerating Scientific Discovery
MRI:收购人工智能超级计算机 (AISC) 以加速科学发现
- 批准号:21174392117439
- 财政年份:2021
- 资助金额:$ 10万$ 10万
- 项目类别:Standard GrantStandard Grant
I-Corps: Standardized MRI Interpretation for Low Back Pain Diagnosis
I-Corps:用于腰痛诊断的标准化 MRI 解读
- 批准号:13389601338960
- 财政年份:2013
- 资助金额:$ 10万$ 10万
- 项目类别:Standard GrantStandard Grant
MRI-R2: Acquisition of a Data Intensive Supercomputer for Innovative and Transformative Research in Science and Engineering
MRI-R2:采购数据密集型超级计算机,用于科学和工程的创新和变革研究
- 批准号:09598700959870
- 财政年份:2010
- 资助金额:$ 10万$ 10万
- 项目类别:Standard GrantStandard Grant
II-NEW: Acquisition of BCI - A Biomedical Computing Infrastructure
II-新:收购 BCI - 生物医学计算基础设施
- 批准号:08552200855220
- 财政年份:2009
- 资助金额:$ 10万$ 10万
- 项目类别:Continuing GrantContinuing Grant
ITR: Opportunistic Parallel Computation
ITR:机会并行计算
- 批准号:00816960081696
- 财政年份:2000
- 资助金额:$ 10万$ 10万
- 项目类别:Continuing GrantContinuing Grant
MRI: Acquisition of a Cluster of Symmetric Multiprocessors
MRI:获取对称多处理器集群
- 批准号:99778159977815
- 财政年份:1999
- 资助金额:$ 10万$ 10万
- 项目类别:Standard GrantStandard Grant
相似国自然基金
临时团队协作历史对协作主动行为的影响研究:基于社会网络视角
- 批准号:72302101
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
边缘网络中的协作视频缓存与服务部署策略研究
- 批准号:62372214
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向边缘智能的无线网络协作计算与资源优化研究
- 批准号:62301307
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
共生无线电网络的模式构建和协作传输机制研究
- 批准号:62372413
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于多模态动态图神经网络的教师在线协作反思测评与干预研究
- 批准号:62307033
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: CHIPS: TCUP Cyber Consortium Advancing Computer Science Education (TCACSE)
合作研究:CHIPS:TCUP 网络联盟推进计算机科学教育 (TCACSE)
- 批准号:24146072414607
- 财政年份:2024
- 资助金额:$ 10万$ 10万
- 项目类别:Standard GrantStandard Grant
Collaborative Research: CHIPS: TCUP Cyber Consortium Advancing Computer Science Education (TCACSE)
合作研究:CHIPS:TCUP 网络联盟推进计算机科学教育 (TCACSE)
- 批准号:24146062414606
- 财政年份:2024
- 资助金额:$ 10万$ 10万
- 项目类别:Standard GrantStandard Grant
Collaborative Research: CPS: Medium: Automating Complex Therapeutic Loops with Conflicts in Medical Cyber-Physical Systems
合作研究:CPS:中:自动化医疗网络物理系统中存在冲突的复杂治疗循环
- 批准号:23225342322534
- 财政年份:2024
- 资助金额:$ 10万$ 10万
- 项目类别:Standard GrantStandard Grant
Collaborative Research: CHIPS: TCUP Cyber Consortium Advancing Computer Science Education (TCACSE)
合作研究:CHIPS:TCUP 网络联盟推进计算机科学教育 (TCACSE)
- 批准号:24146082414608
- 财政年份:2024
- 资助金额:$ 10万$ 10万
- 项目类别:Standard GrantStandard Grant
Collaborative Research: CHIPS: TCUP Cyber Consortium Advancing Computer Science Education (TCACSE)
合作研究:CHIPS:TCUP 网络联盟推进计算机科学教育 (TCACSE)
- 批准号:24146052414605
- 财政年份:2024
- 资助金额:$ 10万$ 10万
- 项目类别:Standard GrantStandard Grant