Collaborative Research: EAGER: Automating CI Configuration Troubleshooting with Bayesian Group Testing

协作研究:EAGER:使用贝叶斯组测试自动化 CI 配置故障排除

基本信息

  • 批准号:
    2333325
  • 负责人:
  • 金额:
    $ 7.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

Configuration troubleshooting in large-scale cyberinfrastructure (CI) software systems is a complex and costly task due to numerous configurable parameters. Existing methods like log mining and machine learning analysis face challenges in such environments. To address this, we present BGT4AutoCI (Automating CI Configuration Troubleshooting with Bayesian Group Testing), a groundbreaking solution that leverages Bayesian Group Testing, ensuring accurate results even with minimal prior knowledge and testing errors. Experienced CI operators can expedite the process with approximated prior knowledge. This research aims to revolutionize CI configuration troubleshooting, introducing a highly precise and efficient approach that will optimize the utilization of current and future large-scale CI systems.The primary focus of this research is to address critical challenges in automated configuration troubleshooting within large-scale CI systems. The proposed three-fold approach encompasses: (1) Formulating Bayesian Group Testing for CI configuration troubleshooting, which employs lattice models to accurately identify risks at the individual configuration parameter level, taking uncertainty into account during troubleshooting. (2) A multinomial paradigm for Bayesian Group Testing, which introduces multinomial responses to simultaneously observe multiple aspects of CI systems, enabling efficient test selection algorithms for jointly testing configuration parameters that impact various aspects of CIs. (3) Automated configuration troubleshooting, which involves the designs of several key components to establish BGT4AutoCI as an automated configuration troubleshooting framework that minimizes the need for human intervention. The outcomes of this project hold the potential to significantly enhance the efficiency and accuracy of CI configuration troubleshooting, benefiting current and future large-scale CI systems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
大规模网络基础结构(CI)软件系统中的配置故障排除是由于许多可配置的参数,是一项复杂且昂贵的任务。现有的方法诸如日志挖掘和机器学习分析在这种环境中面临挑战。为了解决这个问题,我们提出了BGT4AUATOCI(使用贝叶斯组测试进行自动化的CI配置故障排除),这是一种开创性的解决方案,利用贝叶斯组测试,即使使用最少的先验知识和测试错误,也可以确保准确的结果。经验丰富的CI操作员可以通过近似的先验知识加快该过程。这项研究旨在彻底改变CI配置故障排除,引入一种高度精确,高效的方法,该方法将优化当前和未来的大型CI系统的利用。这项研究的主要重点是解决自动化配置故障的关键挑战。 CI系统。提出的三倍方法包括:(1)为CI配置故障排除制定贝叶斯组测试,该测试采用晶格模型来准确地识别单个配置参数级别的风险,并在故障排除期间考虑不确定性。 (2)用于贝叶斯组测试的多项式范式,该范式对同时观察CI系统的多个方面引入了多项式响应,从而实现了有效的测试选择算法,以共同测试影响CIS各个方面的共同测试配置参数。 (3)自动配置故障排除,其中涉及几个关键组件的设计,以建立BGT4AAUTOCI作为自动配置故障排除框架,从而最大程度地减少了对人类干预的需求。该项目的结果有可能显着提高CI配置故障排除的效率和准确性,从而使当前和未来的大规模CI系统受益。该奖项反映了NSF的法定任务,并被认为是值得通过基金会的知识分子优点通过评估来支持的和更广泛的影响审查标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Vipin Chaudhary其他文献

Applying graphics processor units to Monte Carlo dose calculation in radiation therapy
将图形处理器单元应用于放射治疗中的蒙特卡罗剂量计算
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    0.9
  • 作者:
    Mohammad Reza Bakhtiari;H. Malhotra;Jones;Vipin Chaudhary;John Paul Walters;D. Nazareth
  • 通讯作者:
    D. Nazareth
5th CARS/SPIE Joint Workshop on Surgical PACS and the Digital Operating Room
第五届 CARS/SPIE 外科 PACS 和数字手术室联合研讨会
Visual Concept Networks: A Graph-Based Approach to Detecting Anomalous Data in Deep Neural Networks ⋆
视觉概念网络:一种基于图的方法来检测深度神经网络中的异常数据 ⋆
  • DOI:
  • 发表时间:
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Debargha Ganguly;Debayan Gupta;Vipin Chaudhary
  • 通讯作者:
    Vipin Chaudhary
INTERVERTEBRAL DISC DETECTION IN X-RAY IMAGES USING FASTER R-CNN : A DEEP LEARNING APPROACH
使用 FASTER R-CNN 检测 X 射线图像中的椎间盘:一种深度学习方法
  • DOI:
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Ruhan Sa;William Owens;Raymond Wiegand;Mark Studin;Donald Capoferri;Alexander Greaux;Robert Rattray;Adam Hutton;John Cintineo;Vipin Chaudhary
  • 通讯作者:
    Vipin Chaudhary
Creating intelligent cyberinfrastructure for democratizing AI
创建智能网络基础设施以实现人工智能民主化
  • DOI:
    10.1002/aaai.12166
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Dhabaleswar K. Panda;Vipin Chaudhary;Eric Fosler‐Lussier;R. Machiraju;Amitava Majumdar;Beth Plale;R. Ramnath;P. Sadayappan;Neelima Savardekar;Karen Tomko
  • 通讯作者:
    Karen Tomko

Vipin Chaudhary的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Vipin Chaudhary', 18)}}的其他基金

Collaborative Research: SCIPE: Interdisciplinary Research Support Community for Artificial Intelligence and Data Sciences
合作研究:SCIPE:人工智能和数据科学跨学科研究支持社区
  • 批准号:
    2320952
  • 财政年份:
    2023
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
Collaborative Research: PPoSS: Planning: Software Stack for Scalable Heterogeneous NISQ Cluster
协作研究:PPoSS:规划:可扩展异构 NISQ 集群的软件堆栈
  • 批准号:
    2216923
  • 财政年份:
    2022
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
Building Collaborations: A Workshop Facilitating US-India Bilateral Research Collaborations
建立合作:促进美印双边研究合作的研讨会
  • 批准号:
    2219326
  • 财政年份:
    2022
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
CDSE: Collaborative: Cyber Infrastructure to Enable Computer Vision Applications at the Edge Using Automated Contextual Analysis
CDSE:协作:使用自动上下文分析在边缘启用计算机视觉应用的网络基础设施
  • 批准号:
    2104377
  • 财政年份:
    2021
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
MRI: Acquisition of Artificial Intelligence Super Computer (AISC) for Accelerating Scientific Discovery
MRI:收购人工智能超级计算机 (AISC) 以加速科学发现
  • 批准号:
    2117439
  • 财政年份:
    2021
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
I-Corps: Standardized MRI Interpretation for Low Back Pain Diagnosis
I-Corps:用于腰痛诊断的标准化 MRI 解读
  • 批准号:
    1338960
  • 财政年份:
    2013
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
MRI-R2: Acquisition of a Data Intensive Supercomputer for Innovative and Transformative Research in Science and Engineering
MRI-R2:采购数据密集型超级计算机,用于科学和工程的创新和变革研究
  • 批准号:
    0959870
  • 财政年份:
    2010
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
II-NEW: Acquisition of BCI - A Biomedical Computing Infrastructure
II-新:收购 BCI - 生物医学计算基础设施
  • 批准号:
    0855220
  • 财政年份:
    2009
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Continuing Grant
ITR: Opportunistic Parallel Computation
ITR:机会并行计算
  • 批准号:
    0081696
  • 财政年份:
    2000
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Continuing Grant
MRI: Acquisition of a Cluster of Symmetric Multiprocessors
MRI:获取对称多处理器集群
  • 批准号:
    9977815
  • 财政年份:
    1999
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant

相似国自然基金

基于FRET受体上升时间的单分子高精度测量方法研究
  • 批准号:
    22304184
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
脂质多聚复合物mRNA纳米疫苗的构筑及抗肿瘤治疗研究
  • 批准号:
    52373161
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
屏障突破型原位线粒体基因递送系统用于治疗Leber遗传性视神经病变的研究
  • 批准号:
    82304416
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
细胞硬度介导口腔鳞癌细胞与CD8+T细胞间力学对话调控免疫杀伤的机制研究
  • 批准号:
    82373255
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
乙酸钙不动杆菌上调DUOX2激活PERK/ATF4内质网应激在炎症性肠病中的作用机制研究
  • 批准号:
    82300623
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Collaborative Research: EAGER: IMPRESS-U: Groundwater Resilience Assessment through iNtegrated Data Exploration for Ukraine (GRANDE-U)
合作研究:EAGER:IMPRESS-U:通过乌克兰综合数据探索进行地下水恢复力评估 (GRANDE-U)
  • 批准号:
    2409395
  • 财政年份:
    2024
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: An LLM-Powered Framework for G-Code Comprehension and Retrieval
EAGER/协作研究:LLM 支持的 G 代码理解和检索框架
  • 批准号:
    2347624
  • 财政年份:
    2024
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
EAGER/Collaborative Research: Revealing the Physical Mechanisms Underlying the Extraordinary Stability of Flying Insects
EAGER/合作研究:揭示飞行昆虫非凡稳定性的物理机制
  • 批准号:
    2344215
  • 财政年份:
    2024
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345581
  • 财政年份:
    2024
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
Collaborative Research: EAGER: Designing Nanomaterials to Reveal the Mechanism of Single Nanoparticle Photoemission Intermittency
合作研究:EAGER:设计纳米材料揭示单纳米粒子光电发射间歇性机制
  • 批准号:
    2345582
  • 财政年份:
    2024
  • 资助金额:
    $ 7.5万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了