SenSE:Wearable hybrid biochemical and biophysical sensing systems integrated with robust artificial intelligence for monitoring COVID-19 patients
SenSE:可穿戴混合生化和生物物理传感系统,与强大的人工智能集成,用于监测 COVID-19 患者
基本信息
- 批准号:2037405
- 负责人:
- 金额:$ 73.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-15 至 2021-01-31
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The outbreak of Coronavirus Disease 2019 (COVID-19) has infected more than 17 million individuals worldwide, resulting in the death of more than 669, 000 people as of July 2020. Based on the available data and published reports, most people diagnosed with COVID-19 exhibit no or mild symptoms and could be discharged home for self-isolation. About 20% of them will progress to severe disease requiring hospitalization and medical management. Currently, there is a lack of effective methods and technologies for healthcare providers to remotely monitor patients’ clinical conditions at home, evaluate their disease progression, and predict clinical deterioration for timely medical interventions. This multidisciplinary project aims to create a new route to improve the COVID-19 recovery outcome by providing an at-home smart monitoring system. This project will provide exciting interdisciplinary education and research opportunities, as well as hands-on experience, to train our graduate students and to involve undergraduate students, especially minority students, into research. A set of integrated research and education activities will be implemented for out-reaching to K-12 students and the public, to increase their awareness of advanced scientific and engineering solutions for addressing the critical healthcare challenges of COVID-19. Recent studies have established that cytokine level is associated with COVID-19 disease severity and mortality. The level of cytokines can be used as an effective predictor for disease severity and progression. Currently, testing for cytokines involves an organized setup such as blood collection by a phlebotomist and analysis of samples using laboratory equipment such as plate readers. A major drawback is that continuous monitoring of cytokine levels cannot be accomplished since it will require dozens of visits to the hospital over time. The objective of this proposal is to develop a wearable multimodal sensing system integrated with explainable and robust artificial intelligence for continuous monitoring of biophysical and biochemical conditions of COVID-19 patients at home, close tracking of their illness progression, and timely risk level prediction and medical intervention. This project includes three research objectives: (1) develop a wearable biochemical/biophysical sensing system for non-invasive and continuous monitoring of COVID-19 patients, (2) integrate wearable sensing system with explainable and robust artificial intelligence for multimodal sensor data analysis, personalized illness progression modeling, and sensor performance optimization, and (3) characterize and evaluate the multimodal sensor systems with COVID-19 patients. The research will provide fundamental understanding and essential principles for developing a novel sensor for long-term and continuous monitoring of cytokines. Advanced machine learning methods and tools will be developed for multimodal sensor data analysis, risk level determination, and sensor performance optimization. The biosensing technology, device design, and machine learning models developed in this project are applicable to other fields, including sensors to monitor patients with influenza or other diseases, where the continuous monitoring and timely interventions are required.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
截至 2020 年 7 月,2019 年冠状病毒病 (COVID-19) 的爆发已在全球范围内感染了超过 1,700 万人,导致超过 669, 000 人死亡。根据现有数据和已发表的报告,大多数人被诊断患有新冠肺炎-19人没有症状或症状轻微,可以出院自我隔离,其中约20%会发展为重症,需要住院治疗和医疗管理。医疗保健提供者在家中远程监测患者的临床状况,评估其疾病进展并预测临床恶化情况,以便及时进行医疗干预。这个多学科项目旨在通过提供家庭智能设备来创建一条改善 COVID-19 康复结果的新途径。该项目将提供令人兴奋的跨学科教育和研究机会以及实践经验,以培训我们的研究生并让本科生,特别是少数民族学生参与研究。为向 K-12 学生进行外展而实施和公众,以提高他们对解决 COVID-19 的关键医疗挑战的先进科学和工程解决方案的认识。最近的研究表明,细胞因子水平与 COVID-19 疾病的严重程度和死亡率相关。作为疾病严重程度和进展的有效预测因子,目前,细胞因子检测涉及有组织的设置,例如由抽血者采集血液并使用读板器等实验室设备分析样本,一个主要缺点是无法连续监测细胞因子水平。已完成,因为这需要数十次访问该提案的目标是开发一种集成了可解释且强大的人工智能的可穿戴多模式传感系统,用于持续监测家里的 COVID-19 患者的生物物理和生化状况,密切跟踪他们的病情进展并及时进行治疗。该项目包括三个研究目标:(1) 开发可穿戴式生化/生物物理传感系统,用于对 COVID-19 患者进行非侵入性持续监测;(2) 将可穿戴式传感系统与可解释且稳健的人工系统集成。情报多模态传感器数据分析、个性化疾病进展建模和传感器性能优化,以及 (3) 表征和评估适用于 COVID-19 患者的多模态传感器系统。该研究将为长期开发新型传感器提供基本理解和基本原则。该项目将开发先进的机器学习方法和工具,用于多模式传感器数据分析、风险水平确定和传感器性能优化,该技术、设备设计和机器学习模型适用于其他领域。 ,包括监测患者的传感器流感或其他疾病,需要持续监测和及时干预。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Yi Zhang其他文献
Nerve Growth Factor Promotes TLR4 Signaling-Induced Maturation of Human Dendritic Cells In Vitro through Inducible p75NTR 1
神经生长因子通过诱导型 p75NTR 1 促进 TLR4 信号传导诱导的人树突状细胞体外成熟
- DOI:
10.4049/jimmunol.179.9.6297 - 发表时间:
2007-11-01 - 期刊:
- 影响因子:0
- 作者:
Yingming Jiang;Guoyou Chen;Yi Zhang;Lin Lu;Shuxun Liu;Xuetao Cao - 通讯作者:
Xuetao Cao
Energy Efficiency Management and Route Optimization for Wireless Sensor Network under the Ubiquitous Power Internet of Things
泛在电力物联网下无线传感器网络能效管理与路径优化
- DOI:
10.18280/ejee.210213 - 发表时间:
2019-06-30 - 期刊:
- 影响因子:0
- 作者:
Yi Zhang - 通讯作者:
Yi Zhang
Global Retinoblastoma Presentation and Analysis by National Income Level
按国民收入水平划分的全球视网膜母细胞瘤介绍和分析
- DOI:
10.1001/jamaoncol.2019.6716 - 发表时间:
2020-02-27 - 期刊:
- 影响因子:28.4
- 作者:
I. Fabian;E. Abdallah;S. Abdullahi;Rula A Abdulqader;Sahadatou Adamou Boubacar;D. Ademola;A. Adio;A. Afshar;P. Aggarwal;A. Aghaji;Alia Ahmad;M. Akib;Lamis Al Harby;Mouroge H Al Ani;A. Alakbarova;S. A. Portabella;Safaa A F Al;A. P. Alcasabas;S. Al;A. Alejos;Ernesto Alemany;Amadou I Alfa Bio;Yvania Alfonso Carreras;Christiane Al;Hamoud H Y Al;Amany M Ali;D. B. Alia;M. Al;Usama Al;H. Alkatan;Charlotta All;A. Al;Argentino A Almeida;K. Alsawidi;A. Al;Entissar H Al;P. Amiruddin;Romanzo Antonino;Nicholas J Astbury;H. T. Atalay;L. Atchaneeyasakul;Rose Atsiaya;Taweevat Attaseth;T. H. Aung;S. Ayala;Baglan Baizakova;J. Balaguer;R. Balayeva;W. Balwierz;H. Barranco;C. Bascaran;M. Beck Popovic;R. Benavides;S. Benmiloud;N. Bennani Guebessi;R. Berete;J. Berry;A. Bhaduri;S. Bhat;Shelley J Biddulph;E. Biewald;Nadia Bobrova;M. Boehme;H. Boldt;M. T. Bonanomi;N. Bornfeld;Gabrielle C Bouda;H. Bouguila;A. Boumedane;R. Brennan;B. Brichard;Jassada Buaboonnam;Patricia Calderón;Doris A Calle Jara;J. Camuglia;Miriam R. Cano;M. Capra;N. Cassoux;G. Castela;L. Castillo;J. Catalá;G. Chantada;Shabana Chaudhry;S. S. Chaugule;Argudit Chauhan;B. Chawla;V. Chernodrinska;F. Chiwanga;Tsengelmaa Chuluunbat;K. Cieślik;R. Cockcroft;C. Comsa;Z. Corrêa;Maria G Correa Llano;T. Corson;Kristin E Cowan;M. Csóka;Xuehao Cui;Isac V Da Gama;Wantanee Dangboon;Anirban Das;Sima Das;Jacquelyn M. Davanzo;A. Davidson;P. de Potter;K. Q. Delgado;H. Demirci;L. Desjardins;R. D. Diaz Coronado;H. Dimaras;A. Dodgshun;C. Donaldson;Carla R Donato Macedo;M. Dragomir;Yi Du;M. Du Bruyn;Kemala S Edison;I. W. Eka Sutyawan;Asmaa El Kettani;A. Elbahi;J. Elder;Dina Elgalaly;A. Elhaddad;M. Elhassan;Mahmoud M Elzembely;V. Essuman;Ted Grimbert A Evina;Z. Fadoo;A. F;iño;iño;M. Faranoush;O. Fasina;Delia D P G Fernández;A. Fernández;A. Foster;S. Frenkel;Ligia D Fu;Soad L Fuentes;B. Gallie;M. G;iwa;iwa;J. Garcia;D. García Aldana;P. Gassant;J. Geel;Fariba Ghassemi;Ana V Girón;Zelalem Gizachew;Marco A Goenz;Aaron S. Gold;Maya Goldberg;G. Gole;Nir Gomel;Efren Gonzalez;Graciela Gonzalez Perez;L. González;Henry N Garcia Pacheco;Jaime Graells;L. Green;Pernille A Gregersen;Nathália Grigorovski;K. Guedenon;D. Gunasekera;A. Gündüz;Himika Gupta;S. Gupta;T. Hadjistilianou;P. Hamel;S. A. Hamid;N. Hamzah;Eric D. Hansen;J. Harbour;M. Hartnett;M. Hasanreisoğlu;S. Hassan;Shadab Hassan;S. Hederová;Jose Hern;ez;ez;Lorelay Marie Carcamo Hern;ez;ez;L. Hessissen;D. Hordofa;Laura C. Huang;G. Hubbard;Marlies Hummlen;K. Husáková;Allawi N Hussein Al;Russo Ida;V. Ilic;Vivekaraj Jairaj;I. Jeeva;H. Jenkinson;Xunda Ji;D. Jo;K. Johnson;W. J. Johnson;Michael M Jones;T. A. Kabesha;R. Kabore;S. Kaliki;Abubakar Kalinaki;M. Kantar;L. Kao;T. Kardava;R. Kebudi;T. Kepák;Naama Keren;Z. J. Khan;H. A. Khaqan;Phara Khauv;W. Kheir;V. Khetan;A. Khodab;e;e;Zaza Khotenashvili;Jonathan W. Kim;Jeong Hun Kim;H. Kıratlı;T. Kivelä;A. Klett;Jess Elio Kosh Komba Palet;D. Krivaitienė;M. Kruger;Kittisak Kulvichit;M. W. Kuntorini;Alice Kyara;E. S. Lachmann;C. P. Lam;G. Lam;S. Larson;S. Latinovic;Kelly D Laurenti;B. H. A. Le;K. Lecuona;Amy A Leverant;Cairui Li;Ben Limbu;Quah Boon Long;J. P. López;R. Lukamba;L. Lumbroso;S. Luna;Delfitri Lutfi;L. Lysytsia;G. Magrath;A. Mahajan;Abdulla Majeed;E. Maka;M. Makan;E. Makimbetov;Chatonda M;a;a;N. Martín Begué;Lauren Mason;J. Mason;I. Matende;M. Materin;C. Mattosinho;M. Matua;I. Mayet;Freddy B Mbumba;J. D. McKenzie;A. Medina‐Sanson;A. Mehrvar;A. A. Mengesha;V. Menon;G. V. Mercado;M. Mets;E. Midena;D. Mishra;F. G. Mndeme;A. Mohamedani;Mona Mohammad;A. Moll;Margarita M Montero;R. A. Morales;C. Moreira;P. Mruthyunjaya;Mchikirwa S Msina;G. Msukwa;S. Mudaliar;K. I. Muma;F. Munier;Gabriela Murgoi;T. Murray;K. Musa;A. Mushtaq;H. Mustak;Okwen M Muyen;G. Naidu;A. Nair;L. Naumenko;P. N. Ndoye Roth;Yetty M Nency;V. Neroev;H. Ngo;R. Nieves;M. Nikitović;E. Nkanga;H. Nkumbe;Murtuza Nuruddin;Mutale Nyaywa;Ghislaine Obono;N. Oguego;A. Olechowski;S. Oliver;P. Osei;D. Oss;ón;ón;M. Paez;Halimah Pagarra;Sally L. Painter;V. Paintsil;L. Paiva;Bikramjit P. Pal;M. Palanivelu;R. Papyan;R. Parrozzani;M. Parulekar;Claudia Pascual Morales;K. Paton;K. Pawińska;J. Pe’er;A. Peña;S. Perić;C. Pham;Remezo Philbert;D. Plager;P. Pochop;R. Polania;V. Polyakov;M. Pompe;J. Pons;D. Prat;Vireak Prom;Ignatius Purwanto;A. Qadir;S. Qayyum;J. Qian;Ardizal Rahman;Salman Rahman;Jamalia Rahmat;Purnima Rajkarnikar;Rajesh Ramanjulu;Aparna Ramasubramanian;M. Ramírez;L. Raobela;Riffat Rashid;M. Reddy;Ehud Reich;L. Renner;D. Reynders;Dahiru Ribadu;Mussagy M Riheia;Petra Ritter;Duangnate Rojanaporn;Livia Romero;S. Roy;R. Saab;S. Saakyan;A. Sabhan;M. Sagoo;A. Said;R. Saiju;Beatriz Salas;Sonsoles San Román Pacheco;Gissela L Sánchez;Phayvanh Sayalith;T. Scanlan;A. Schefler;J. Schoeman;Ahad Sedaghat;S. Seregard;R. Seth;Ankoor S. Shah;S. Shakoor;M. Sharma;SADIK TAJU SHERIEF;N. Shetye;C. Shields;S. Siddiqui;Sidi Sidi cheikh;Sónia Silva;Arun D. Singh;Niharika Singh;U. Singh;P. Singha;R. Sitorus;Alison H. Skalet;H. D. Soebagjo;T. Sorochynska;Grace Ssali;A. Stacey;S;ra E. Staffieri;ra;E. Stahl;C. Stathopoulos;B. Stirn Kranjc;D. Stones;C. Strahlendorf;Maria Estela Coleoni Suarez;S. Sultana;Xiantao Sun;Meryl Sundy;R. Superstein;E. Supriyadi;Supawan Surukrattanaskul;Shigenobu Suzuki;K. Svojgr;F. Sylla;G. Tamamyan;D. Tan;Alketa T;ili;ili;Fanny F Tarrillo Leiva;M. Tashvighi;Bekim Tateshi;E. Tehuteru;L. Teixeira;K. Teh;Tuyisabe Theophile;H. Toledano;Doan L Trang;F. Traoré;S. Trichaiyaporn;S. Tuncer;Harba Tyau;A. Umar;E. Unal;Ogul E. Uner;S. F. Urbak;T. Ushakova;Rustam H Usmanov;S. Valeina;M. van Hoefen Wijsard;Adisai Varadisai;Liliana Vásquez;Leon O Vaughan;Nevyana V Veleva;N. Verma;A. Victor;Maris Viksnins;Edwin G Villacís Chafla;V. Vishnevskia;T. Vora;A. Wachtel;W. Wackernagel;K. Waddell;P. Wade;Amina H Wali;Yizhuo Wang;A. Weiss;M. Wilson;A. D. Wime;A. Wiwatwongwana;Damrong Wiwatwongwana;Charlotte Wolley Dod;Phanthipha Wongwai;Daoman Xiang;Yi;J. C. Yam;Huasheng Yang;Jenny M Yanga;M. A. Yaqub;V. Yarovaya;A. Yarovoy;H. Ye;Y. Yousef;P. Yuliawati;Arturo M Zapata López;Ekhtelbenina Zein;Chengyue Zhang;Yi Zhang;Junyang Zhao;Xiaoyu Zheng;Katsiaryna Zhilyaeva;N. Zia;Othman A O Ziko;M. Zondervan;R. Bowman - 通讯作者:
R. Bowman
Fabrication of Photochemical Pattern on a Self-Assembled Monolayer (SAM) of a Ruthenium Cluster under Electrochemical Control
电化学控制下钌簇自组装单层 (SAM) 上光化学图案的制作
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
Yi Zhang; et al. - 通讯作者:
et al.
Impact Evaluation of Bike-Sharing on Bicycling Accessibility
共享单车对骑行可达性的影响评估
- DOI:
10.3390/su12156124 - 发表时间:
2020-07-30 - 期刊:
- 影响因子:3.9
- 作者:
Mingzhu Song;Kaiping Wang;Yi Zhang;Meng Li;He Qi;Yi Zhang - 通讯作者:
Yi Zhang
Yi Zhang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Yi Zhang', 18)}}的其他基金
CAREER: Implantable multimodal bioelectronics for high-performance gastrointestinal monitoring and modulation
职业:用于高性能胃肠道监测和调节的植入式多模式生物电子学
- 批准号:
2238273 - 财政年份:2023
- 资助金额:
$ 73.75万 - 项目类别:
Continuing Grant
NSF Student Travel Grant for 2022 ACM Recommender Systems Conference
2022 年 ACM 推荐系统会议 NSF 学生旅行补助金
- 批准号:
2228556 - 财政年份:2022
- 资助金额:
$ 73.75万 - 项目类别:
Standard Grant
NSF Student Travel Grant for 2022 ACM Recommender Systems Conference
2022 年 ACM 推荐系统会议 NSF 学生旅行补助金
- 批准号:
2228556 - 财政年份:2022
- 资助金额:
$ 73.75万 - 项目类别:
Standard Grant
Novel Discontinuous Galerkin Methods for Deterministic and Stochastic Optimization Problems with Inequality Constraints
具有不等式约束的确定性和随机优化问题的新型间断伽辽金方法
- 批准号:
2111004 - 财政年份:2021
- 资助金额:
$ 73.75万 - 项目类别:
Continuing Grant
Collaborative Research: CRISPR-SERS system for rapid and ultrasensitive detection of foodborne bacterial pathogens
合作研究:用于快速、超灵敏检测食源性细菌病原体的 CRISPR-SERS 系统
- 批准号:
2031276 - 财政年份:2020
- 资助金额:
$ 73.75万 - 项目类别:
Standard Grant
SenSE:Wearable hybrid biochemical and biophysical sensing systems integrated with robust artificial intelligence for monitoring COVID-19 patients
SenSE:可穿戴混合生化和生物物理传感系统,与强大的人工智能集成,用于监测 COVID-19 患者
- 批准号:
2113736 - 财政年份:2020
- 资助金额:
$ 73.75万 - 项目类别:
Standard Grant
Collaborative Research: CRISPR-SERS system for rapid and ultrasensitive detection of foodborne bacterial pathogens
合作研究:用于快速、超灵敏检测食源性细菌病原体的 CRISPR-SERS 系统
- 批准号:
2103025 - 财政年份:2020
- 资助金额:
$ 73.75万 - 项目类别:
Standard Grant
Collaborative Research: CRISPR-SERS system for rapid and ultrasensitive detection of foodborne bacterial pathogens
合作研究:用于快速、超灵敏检测食源性细菌病原体的 CRISPR-SERS 系统
- 批准号:
2103025 - 财政年份:2020
- 资助金额:
$ 73.75万 - 项目类别:
Standard Grant
CAREER: Understanding Community College Transfer Students' STEM Choice, Performance, Persistence, and STEM Baccalaureate Degree Attainment: A Typological Analysis
职业:了解社区大学转学生的 STEM 选择、表现、坚持和 STEM 学士学位获得情况:类型分析
- 批准号:
1652622 - 财政年份:2017
- 资助金额:
$ 73.75万 - 项目类别:
Continuing Grant
WORKSHOP: Doctoral Symposium at the 2014 Recommender System Conference
WORKSHOP:2014年推荐系统大会博士生研讨会
- 批准号:
1433104 - 财政年份:2014
- 资助金额:
$ 73.75万 - 项目类别:
Standard Grant
相似国自然基金
主动增强运载能力的人机融合可穿戴轮腿式机器人关键技术研究
- 批准号:62333007
- 批准年份:2023
- 资助金额:231 万元
- 项目类别:重点项目
面向恶性肿瘤标志物原位监测的穿戴式Aptamer-GFET柔性微纳生物传感器的研究
- 批准号:52305606
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
井下穿戴式柔性传感器件表面能调控多模力-电耦合增强机理研究
- 批准号:52375554
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于穿戴式个体热调节的室内体力劳动人员热舒适理论研究
- 批准号:52378100
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于多源信号融合的穿戴式心房颤动事件识别关键技术研究
- 批准号:62361013
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
CAREER: High-Resolution Hybrid Printing of Wearable Heaters with Shape-Changeable Structures
职业:具有可变形结构的可穿戴加热器的高分辨率混合打印
- 批准号:
2340414 - 财政年份:2024
- 资助金额:
$ 73.75万 - 项目类别:
Standard Grant
Randomized controlled trial of a novel digital health solution to enable remote fetal monitoring in high risk pregnancies
新型数字健康解决方案的随机对照试验,可在高风险妊娠中实现远程胎儿监测
- 批准号:
10682538 - 财政年份:2021
- 资助金额:
$ 73.75万 - 项目类别:
Randomized controlled trial of a novel digital health solution to enable remote fetal monitoring in high risk pregnancies
新型数字健康解决方案的随机对照试验,可在高风险妊娠中实现远程胎儿监测
- 批准号:
10682538 - 财政年份:2021
- 资助金额:
$ 73.75万 - 项目类别:
I2I Phase 1: Optimization of a flexible hybrid electrochemical energy storage system for wearable devices
I2I 第一阶段:可穿戴设备灵活混合电化学储能系统的优化
- 批准号:
548756-2020 - 财政年份:2020
- 资助金额:
$ 73.75万 - 项目类别:
Idea to Innovation
SenSE:Wearable hybrid biochemical and biophysical sensing systems integrated with robust artificial intelligence for monitoring COVID-19 patients
SenSE:可穿戴混合生化和生物物理传感系统,与强大的人工智能集成,用于监测 COVID-19 患者
- 批准号:
2113736 - 财政年份:2020
- 资助金额:
$ 73.75万 - 项目类别:
Standard Grant