Novel Discontinuous Galerkin Methods for Deterministic and Stochastic Optimization Problems with Inequality Constraints

具有不等式约束的确定性和随机优化问题的新型间断伽辽金方法

基本信息

  • 批准号:
    2111004
  • 负责人:
  • 金额:
    $ 11.49万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-01 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

The project aims to develop new numerical methods for solving optimization problems that have applications in elasticity theory, fluid filtration in porous media, constrained heating, cancer therapy, shape optimization, and financial mathematics. The computational simulations from this project will provide insights on the understanding of complicated physical models with random perturbations. Another emphasis of this project will be the training of graduate students in numerical methods and their analysis while also training the students in theory. The students will further be trained in the efficient implementation of the computer codes so that they are better prepared for careers in industry.The project is on the design, implementation, and rigorous analysis of a new class of discontinuous Galerkin (DG) methods for variational inequalities and optimal control problems with inequality constraints that are fundamental for the modeling of nonlinear problems arising from applications in materials science, mechanical engineering, shape optimization, and financial science. Furthermore, the underlying problems may involve small parameters and random perturbations such that the complete numerical analyses are more subtle. The formulations of classical DG methods usually require large positive penalty parameters that depend on the shape regularity of the mesh and other unknown constants. The project will design novel DG methods for variational inequalities, optimal control problems with partial differential equations constraints, and related singularly perturbed and stochastically perturbed problems. Another goal of the project is to design robust, reliable, and efficient a posteriori error estimators for the corresponding deterministic and stochastic problems.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目旨在开发新的数值方法来解决优化问题,这些方法可应用于弹性理论、多孔介质中的流体过滤、约束加热、癌症治疗、形状优化和金融数学。该项目的计算模拟将为理解具有随机扰动的复杂物理模型提供见解。该项目的另一个重点是对研究生进行数值方法及其分析的培训,同时对学生进行理论培训。学生将进一步接受计算机代码的有效实施方面的培训,以便他们为工业职业生涯做好更好的准备。该项目致力于设计、实施和严格分析一类新型不连续伽辽金 (DG) 方法,用于变分法不等式和带有不等式约束的最优控制问题是材料科学、机械工程、形状优化和金融科学应用中产生的非线性问题建模的基础。此外,潜在的问题可能涉及小参数和随机扰动,使得完整的数值分析更加微妙。经典 DG 方法的公式通常需要较大的正罚参数,这些参数取决于网格的形状规律性和其他未知常数。该项目将为变分不等式、具有偏微分方程约束的最优控制问题以及相关的奇异扰动和随机扰动问题设计新颖的DG方法。该项目的另一个目标是为相应的确定性和随机问题设计稳健、可靠和高效的后验误差估计器。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力优点和更广泛的影响审查进行评估,被认为值得支持标准。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Yi Zhang其他文献

Cell guidance on peptide micropatterned silk fibroin scaffolds.
肽微图案丝素蛋白支架上的细胞引导。
  • DOI:
    10.1016/j.jcis.2021.06.086
  • 发表时间:
    2021-06-17
  • 期刊:
  • 影响因子:
    9.9
  • 作者:
    Wei;Caroline S Taylor;Yi Zhang;D. Gregory;Mhd Anas Tomeh;J. Haycock;Patrick J. Smith;Feng Wang;Qingyou Xia;Xiubo Zhao
  • 通讯作者:
    Xiubo Zhao
Rhodiola crenulate alleviates hypobaric hypoxia-induced brain injury via adjusting NF-κB/NLRP3-mediated inflammation.
红景天通过调节 NF-κB/NLRP3 介导的炎症来减轻低压缺氧引起的脑损伤。
[Research of histochemical staining for identifying the function and morphology of fascicles in three-dimensional reconstruction of peripheral nerves].
组织化学染色鉴定周围神经三维重建中束功能和形态的研究
NF-Y cooperates with USF1/2 to induce the hematopoietic expression of HOXB4.
NF-Y与USF1/2协同诱导HOXB4的造血表达。
  • DOI:
    10.1182/blood-2003-01-0251
  • 发表时间:
    2003-10-01
  • 期刊:
  • 影响因子:
    20.3
  • 作者:
    Jiang Zhu;D. Giannola;Yi Zhang;Adam J Rivera;S. Emerson
  • 通讯作者:
    S. Emerson
Crystal structure and dielectric property of supramolecular macrocyclic [(NDPA)·(18-crown-6)]2+·(DMA)+·3ClO4− assemblies
超分子大环[(NDPA)·(18-crown-6)]2··(DMA)·3ClO4·组装体的晶体结构和介电性能
  • DOI:
    10.1016/j.cclet.2014.10.005
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    9.1
  • 作者:
    Fangfang Wang;Cheng Chen;Yi Zhang;D. Fu
  • 通讯作者:
    D. Fu

Yi Zhang的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Yi Zhang', 18)}}的其他基金

CAREER: Implantable multimodal bioelectronics for high-performance gastrointestinal monitoring and modulation
职业:用于高性能胃肠道监测和调节的植入式多模式生物电子学
  • 批准号:
    2238273
  • 财政年份:
    2023
  • 资助金额:
    $ 11.49万
  • 项目类别:
    Continuing Grant
NSF Student Travel Grant for 2022 ACM Recommender Systems Conference
2022 年 ACM 推荐系统会议 NSF 学生旅行补助金
  • 批准号:
    2228556
  • 财政年份:
    2022
  • 资助金额:
    $ 11.49万
  • 项目类别:
    Standard Grant
NSF Student Travel Grant for 2022 ACM Recommender Systems Conference
2022 年 ACM 推荐系统会议 NSF 学生旅行补助金
  • 批准号:
    2228556
  • 财政年份:
    2022
  • 资助金额:
    $ 11.49万
  • 项目类别:
    Standard Grant
Collaborative Research: CRISPR-SERS system for rapid and ultrasensitive detection of foodborne bacterial pathogens
合作研究:用于快速、超灵敏检测食源性细菌病原体的 CRISPR-SERS 系统
  • 批准号:
    2031276
  • 财政年份:
    2020
  • 资助金额:
    $ 11.49万
  • 项目类别:
    Standard Grant
SenSE:Wearable hybrid biochemical and biophysical sensing systems integrated with robust artificial intelligence for monitoring COVID-19 patients
SenSE:可穿戴混合生化和生物物理传感系统,与强大的人工智能集成,用于监测 COVID-19 患者
  • 批准号:
    2037405
  • 财政年份:
    2020
  • 资助金额:
    $ 11.49万
  • 项目类别:
    Standard Grant
SenSE:Wearable hybrid biochemical and biophysical sensing systems integrated with robust artificial intelligence for monitoring COVID-19 patients
SenSE:可穿戴混合生化和生物物理传感系统,与强大的人工智能集成,用于监测 COVID-19 患者
  • 批准号:
    2113736
  • 财政年份:
    2020
  • 资助金额:
    $ 11.49万
  • 项目类别:
    Standard Grant
Collaborative Research: CRISPR-SERS system for rapid and ultrasensitive detection of foodborne bacterial pathogens
合作研究:用于快速、超灵敏检测食源性细菌病原体的 CRISPR-SERS 系统
  • 批准号:
    2103025
  • 财政年份:
    2020
  • 资助金额:
    $ 11.49万
  • 项目类别:
    Standard Grant
Collaborative Research: CRISPR-SERS system for rapid and ultrasensitive detection of foodborne bacterial pathogens
合作研究:用于快速、超灵敏检测食源性细菌病原体的 CRISPR-SERS 系统
  • 批准号:
    2103025
  • 财政年份:
    2020
  • 资助金额:
    $ 11.49万
  • 项目类别:
    Standard Grant
CAREER: Understanding Community College Transfer Students' STEM Choice, Performance, Persistence, and STEM Baccalaureate Degree Attainment: A Typological Analysis
职业:了解社区大学转学生的 STEM 选择、表现、坚持和 STEM 学士学位获得情况:类型分析
  • 批准号:
    1652622
  • 财政年份:
    2017
  • 资助金额:
    $ 11.49万
  • 项目类别:
    Continuing Grant
WORKSHOP: Doctoral Symposium at the 2014 Recommender System Conference
WORKSHOP:2014年推荐系统大会博士生研讨会
  • 批准号:
    1433104
  • 财政年份:
    2014
  • 资助金额:
    $ 11.49万
  • 项目类别:
    Standard Grant

相似国自然基金

面向多尺度目标瞬态/宽频带电磁特性的高效建模方法研究
  • 批准号:
    61901002
  • 批准年份:
    2019
  • 资助金额:
    24.5 万元
  • 项目类别:
    青年科学基金项目
三维集成电路多物理场仿真快速算法研究及应用
  • 批准号:
    61871340
  • 批准年份:
    2018
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目
具有粘性逆Lax-Wendroff边界处理和紧凑WENO限制器的自适应网格local discontinuous Galerkin方法
  • 批准号:
    11872210
  • 批准年份:
    2018
  • 资助金额:
    63.0 万元
  • 项目类别:
    面上项目
用于复杂多尺度电磁问题的新型非共形积分方程方法研究
  • 批准号:
    61801097
  • 批准年份:
    2018
  • 资助金额:
    26.0 万元
  • 项目类别:
    青年科学基金项目
射频系统强电磁脉冲效应高效时域建模方法研究
  • 批准号:
    61871228
  • 批准年份:
    2018
  • 资助金额:
    67.0 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Arbitrary Order Structure-Preserving Discontinuous Galerkin Methods for Compressible Euler Equations With Self-Gravity in Astrophysical Flows
合作研究:天体物理流中自重力可压缩欧拉方程的任意阶结构保持不连续伽辽金方法
  • 批准号:
    2309591
  • 财政年份:
    2023
  • 资助金额:
    $ 11.49万
  • 项目类别:
    Standard Grant
Development of Adaptive Sparse Grid Discontinuous Galerkin Methods for Multiscale Kinetic Simulations in Plasmas
等离子体多尺度动力学模拟的自适应稀疏网格间断伽辽金方法的发展
  • 批准号:
    2404521
  • 财政年份:
    2023
  • 资助金额:
    $ 11.49万
  • 项目类别:
    Standard Grant
Collaborative Research: Arbitrary Order Structure-Preserving Discontinuous Galerkin Methods for Compressible Euler Equations With Self-Gravity in Astrophysical Flows
合作研究:天体物理流中自重力可压缩欧拉方程的任意阶结构保持间断伽辽金方法
  • 批准号:
    2309590
  • 财政年份:
    2023
  • 资助金额:
    $ 11.49万
  • 项目类别:
    Standard Grant
Conservative discontinuous Galerkin methods with implicit penalty parameters and multiscale hybridizable discontinuous Galerkin methods for PDEs
具有隐式惩罚参数的保守间断伽辽金方法和偏微分方程的多尺度可杂交间断伽辽金方法
  • 批准号:
    2309670
  • 财政年份:
    2023
  • 资助金额:
    $ 11.49万
  • 项目类别:
    Standard Grant
Computational Relativistic Astrophysics via Space-Time Discontinuous Galerkin Finite Element Methods
基于时空不连续伽辽金有限元方法的计算相对论天体物理学
  • 批准号:
    RGPIN-2017-04581
  • 财政年份:
    2022
  • 资助金额:
    $ 11.49万
  • 项目类别:
    Discovery Grants Program - Individual
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了