Collaborative Research: FET: Small: Massive Scale Computing and Optimization through On-chip ParameTric Ising MAchines (OPTIMA)

合作研究:FET:小型:通过片上 ParameTric Ising 机器进行大规模计算和优化 (OPTIMA)

基本信息

  • 批准号:
    2103091
  • 负责人:
  • 金额:
    $ 22万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-15 至 2025-06-30
  • 项目状态:
    未结题

项目摘要

For decades, academia and industry have relied on deterministic algorithms and on general-purpose von-Neumann computing architectures to solve combinatorial-optimization (CO) problems within natural and social sciences. As Moore’s law continues to slow down, the existing computing paradigm is reaching the limit of maximum complexity of the CO problems it can tackle, thus becoming increasingly inadequate to answer, in reasonable times, the fundamental questions that keep rising in a wide range of disciplines, spanning from engineering, physics and medicine to economics and finance. By emulating quantum systems, new computing architectures known as Ising Machines (IMs) have been emerging. IMs offer the unique opportunity to solve extraordinarily complex CO problems much faster than any existing von-Neumann counterparts. Yet, to date, no IM technology can afford a massive number of spins to handle the currently unsolvable CO problems, while ensuring a low-power consumption, a compact form factor, a chip-scale integration and a manufacturability en masse through the consolidated wafer-scale fabrication processes offered by the semiconductor industry. The goal of this project is to explore and develop a new IM, namely the first On-chip ParameTric Ising MAchine (OPTIMA). Thanks to its unique highly reprogrammable dynamics, triggered without requiring any special environmental conditions or any time-consuming pre-processing steps while exclusively requiring chip-scale components that can be monolithic integrated in favor of a massive scale production, the development of OPTIMA will pave the way towards powerful, fast and miniaturized quantum-inspired computing systems, accessible to everybody from everywhere. This will allow the creation of new cyber infrastructures that scholars, scientists, engineers and educators worldwide will be able to use in order to address relevant technological and social challenges. The project team is collaborating with STEM education and workforce development programs, at both Northeastern University and the University of Florida, to organize and host on-campus activities with students and teachers from both K-12 schools and community colleges, as well as outreach visits to local schools to encourage and broaden participation of underrepresented groups. The project achievements are enriching both the undergraduate and the graduate courses that the investigators teach on circuit theory, advanced acoustic-based technologies for communication and sensing, micro/nanoelectromechanical systems (MEMS/NEMS), and quantum engineering devices and systems. OPTIMA is leveraging the unique dynamical features governing the electrical response of a synchronized network of coupled on-chip Electro-Acoustic-Parametric-Oscillators (EAPOs) exploiting the uniquely combined ferroelectric and acoustic properties of Aluminum Scandium Nitride (AlScN) micro/nano devices to create extraordinarily low-power and highly miniaturized artificial spins, manufacturable through complementary-metal-oxide-semiconductor (CMOS) processes. Such unique features allow the breaking of all the previous paradigms in the design of IMs by simultaneously enabling 106 spins, a CMOS-compatible wafer-scale manufacturing and room-temperature operation while consuming less than 1 Watt. Further, thanks to its highly parallelized computational flow and because the EAPOs are operating in the Super-High-Frequency (SHF) range, OPTIMA is able to solve even the hardest nondeterministic polynomial time (NP) CO problems in nanosecond time scales, independently of the problem size. Finally, since OPTIMA is manufacturable through CMOS compatible processes, it is greatly leveraging conventional IC components built on the same silicon wafer to enable flexible programming, based on the CO problems of interest, as well as compact read-out schemes.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
几十年来,学术界和行业一直在确定性算法和通用von-neumann计算体系结构方面放松,以解决自然和社会科学中的组合问题(CO)问题。随着摩尔定律继续放慢速度,现有的计算范式达到了它可以解决的CO问题的最大复杂性的极限,因此在合理的时期,越来越不足以回答,这些问题的基本问题不断增加,这些问题不断增加,从工程,物理学和医学到经济学和金融。通过模拟量子系统,新的计算体系结构已出现,称为ISING机器(IMS)。 IMS提供了与任何现有的Von-Neumann同行更快地解决非常复杂的CO问题的独特机会。但是,迄今为止,没有IM技术能够提供大量的旋转来解决当前无法解决的CO问题,同时确保低功率消耗,紧凑的外形,芯片尺度集成以及通过整合的晶状体制造工艺进行了大量的制造能力。该项目的目的是探索和开发新的IM,即首个芯片参数ising机器(Optima)。感谢它独特的高度重编程动力学,触发的无需任何特殊的环境条件或任何耗时的预处理步骤,同时仅需要一个可以整体上整合的芯片尺度组件,而倾向于大规模的规模生产,Optima的开发将倾向于强大,快速,快速,快速和微型的量子量化的计算机,每个人都可以访问每个人,以访问每个人,以访问每个人,以便每个人都可以访问。这将允许创建新的网络基础设施,以解决全球学者,科学家,工程师和教育工作者,以应对相关的技术和社会挑战。该项目团队正在与东北大学和佛罗里达大学的STEM教育和劳动力发展计划合作,与K-12学校和社区学院的学生和老师组织和主持校园活动,以及对当地学校的宣传访问,以鼓励和扩大人为不足的小组的参与。该项目的成就丰富了研究人员在巡回理论上教授的本科和研究生课程,基于高级声学的通信和传感技术,微/纳米/纳米机电系统(MEMS/NEMS)以及量子工程设备和系统。 Optima正在利用独特的动态特征,该特征是耦合的芯片上电气 - 声学参数振荡器(EAPOS)的电动响应,从而利用独特的组合铁电和声学性能的铝s骨(ALSCN)微型二氮化型和高度的人工子及以下的铝s层和高度的人工水平,以创建高度且高度的nanano型铝s层,以形成高度且高度的nanano。通过互补的金属 - 氧化物 - 氧化流程(CMOS)过程制造。这样的独特功能可以通过简单地启用106次旋转,一种与CMOS兼容的晶圆尺度的制造和室温操作,而消耗少于1瓦,可以破坏IMS设计的所有范式。此外,由于其高度平行的计算流以及EAPO在超高频率(SHF)范围内运行,Optima能够在纳米秒尺度上解决最困难的非确定多项式时间(NP)CO问题,与问题大小无关。 Finally, since OPTIMA is manufacturerable through CMOS compatible processes, it is great leveraging conventional IC components built on the same silicon waver to enable flexible programming, based on the CO problems of interest, as well as compact read-out schemes.This award reflects NSF's statutory mission and has been deemed precious of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Air Damping Effects on Different Modes of AlN-on-Si Microelectromechanical Resonators
Thin Film PZT Multimode Resonant MEMS Temperature Sensor
薄膜 PZT 多模谐振 MEMS 温度传感器
  • DOI:
    10.1109/sensors52175.2022.9967330
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Sui, Wen;Kaisar, Tahmid;Wang, Haoran;Wu, Yihao;Lee, Jaesung;Xie, Huikai;Feng, Philip X.-L.
  • 通讯作者:
    Feng, Philip X.-L.
Retaining High Q Factors in Electrode-Less Aln-On-Si Bulk Mode Resonators with Non-Contact Electrical Drive
采用非接触式电力驱动的无电极硅基铝体模式谐振器保持高品质因数
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Philip Feng其他文献

Philip Feng的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Philip Feng', 18)}}的其他基金

EAGER: Collaborative Research: Graphene Nanoelectromechanical Oscillators for Extreme Temperature and Harsh Environment Sensing
EAGER:合作研究:用于极端温度和恶劣环境传感的石墨烯纳米机电振荡器
  • 批准号:
    2221881
  • 财政年份:
    2022
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Collaborative Research: Innovating Quantum-Inspired Learning for Undergraduates in Research and Engineering
协作研究:为研究和工程本科生创新量子启发学习
  • 批准号:
    2142552
  • 财政年份:
    2022
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Collaborative Research: Harnessing Crystalline Phase Transition in 2D Materials for Ultra-Low-Power and Flexible Electronics
合作研究:利用二维材料中的晶体相变实现超低功耗和柔性电子产品
  • 批准号:
    2015670
  • 财政年份:
    2019
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
CAREER: Dynamically Tuning 2D Semiconducting Crystals and Heterostructures for Atomically-Thin Signal Processing Devices and Systems
职业:动态调整原子薄信号处理设备和系统的二维半导体晶体和异质结构
  • 批准号:
    2015708
  • 财政年份:
    2019
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Collaborative Research: Harnessing Crystalline Phase Transition in 2D Materials for Ultra-Low-Power and Flexible Electronics
合作研究:利用二维材料中的晶体相变实现超低功耗和柔性电子产品
  • 批准号:
    1810154
  • 财政年份:
    2018
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
CAREER: Dynamically Tuning 2D Semiconducting Crystals and Heterostructures for Atomically-Thin Signal Processing Devices and Systems
职业:动态调整原子薄信号处理设备和系统的二维半导体晶体和异质结构
  • 批准号:
    1454570
  • 财政年份:
    2015
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Self-Sustaining Tunable Multi-Frequency Oscillators Using Atomically-Thin Semiconducting Multimode Resonators
使用原子薄半导体多模谐振器的自持可调谐多频振荡器
  • 批准号:
    1509721
  • 财政年份:
    2015
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Collaborative Research: Silicon Carbide Devices for Optomechanics and Photonics
合作研究:用于光机械和光子学的碳化硅器件
  • 批准号:
    1408494
  • 财政年份:
    2014
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant

相似国自然基金

离子辐照精准调控SnS2栅极敏感材料缺陷密度增强碳基FET型气体传感器性能的研究
  • 批准号:
    12305330
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
石墨烯等离激元增强光纤微FET监测类器官标志物及其机理研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
基于平面浮栅FET及脉冲电场传感调控的室温氢气传感研究
  • 批准号:
    62204163
  • 批准年份:
    2022
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
基于平面浮栅FET及脉冲电场传感调控的室温氢气传感研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
石墨烯等离激元增强光纤微FET监测类器官标志物及其机理研究
  • 批准号:
    12274058
  • 批准年份:
    2022
  • 资助金额:
    55.00 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: FET: Small: Algorithmic Self-Assembly with Crisscross Slats
合作研究:FET:小型:十字交叉板条的算法自组装
  • 批准号:
    2329908
  • 财政年份:
    2024
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Small: Reservoir Computing with Ion-Channel-Based Memristors
合作研究:FET:小型:基于离子通道忆阻器的储层计算
  • 批准号:
    2403559
  • 财政年份:
    2024
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Small: Algorithmic Self-Assembly with Crisscross Slats
合作研究:FET:小型:十字交叉板条的算法自组装
  • 批准号:
    2329909
  • 财政年份:
    2024
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Small: Reservoir Computing with Ion-Channel-Based Memristors
合作研究:FET:小型:基于离子通道忆阻器的储层计算
  • 批准号:
    2403560
  • 财政年份:
    2024
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
Collaborative Research: FET: Medium:Compact and Energy-Efficient Compute-in-Memory Accelerator for Deep Learning Leveraging Ferroelectric Vertical NAND Memory
合作研究:FET:中型:紧凑且节能的内存计算加速器,用于利用铁电垂直 NAND 内存进行深度学习
  • 批准号:
    2312886
  • 财政年份:
    2023
  • 资助金额:
    $ 22万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了