Collaborative Research: FET: Small: Reservoir Computing with Ion-Channel-Based Memristors
合作研究:FET:小型:基于离子通道忆阻器的储层计算
基本信息
- 批准号:2403560
- 负责人:
- 金额:$ 33.67万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-05-01 至 2027-04-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The general-purpose digital computing paradigm faces severe limitations, which could potentially be addressed by adopting more brain-inspired approaches. However, despite significant recent advancements in artificial intelligence algorithms, substantial work remains in developing hardware capable of emulating the functionality and energy efficiency of the brain. This project aims to develop novel physical reservoir computing architectures that harness the highly nonlinear dynamics of ion-channel-based memristors (ICMs). This work will develop new fabrication methods, learning algorithms, and network designs to take advantage of the unique properties of the proposed materials. This will lead towards a new paradigm for brain-inspired computing with biocompatible and highly energy-efficient hardware. The long-term goal is to develop low-cost, energy-efficient, highly tunable, modular, fault-tolerant, and self-healing biomolecular neural networks and tissues. The intended applications include signal processing, in-sensor and near-sensor computing, neuro-engineering, artificial intelligence, and post-silicon technologies. The educational impact leverages the fact that this project interfaces with topics in engineering, biology, physics, and chemistry. Students who are involved will receive exclusive scientific training, which will help prepare them for making contributions in multiple fields.Traditional reservoir computers use a reservoir layer comprising a recurrent connection of neurons with randomly assigned synaptic weights, followed by a readout layer whose nonvolatile synaptic weights are trained. The hypothesis is that both reservoir and readout layers can be combined into a single layer using ICMs that exhibit collocated volatile and non-volatile memories. The basic element in these devices is an insulating lipid membrane that mimics the composition and function of biological membranes. In the presence of voltage-activated ion channels, these synthetic lipid membranes can exhibit voltage-dependent memristance caused by membrane and ion channel dynamics. This proposed research specifically aims to: 1) understand how the specific properties of the ICMs can be harnessed for reservoir computing; 2) design architectures tailored to the nonlinear short-term memory dynamics of our devices in both the reservoir and the readout layers, and possibly combine them into a single layer; 3) experimentally validate using crossbar arrays of the ICMs; and 4) generalize the new reservoir architecture so it can be used with other nonvolatile and volatile memristors, possibly solid-state in nature.This project is jointly funded by the Software and Hardware Foundations Cluster of the Division of Computing and Communication Foundations (CCF) in the Directorate for Computer and Information Science and Engineering (CISE) and the Established Program to Stimulate Competitive Research (EPSCoR).This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
通用数字计算范式面临着严重的局限性,这可以通过采用更多受大脑启发的方法来解决。然而,尽管人工智能算法最近取得了重大进展,但在开发能够模拟大脑功能和能源效率的硬件方面仍有大量工作要做。该项目旨在开发新颖的物理储层计算架构,利用基于离子通道的忆阻器(ICM)的高度非线性动力学。这项工作将开发新的制造方法、学习算法和网络设计,以利用所提出材料的独特性能。这将带来一种具有生物相容性和高能效硬件的类脑计算的新范式。长期目标是开发低成本、节能、高度可调、模块化、容错和自愈的生物分子神经网络和组织。预期应用包括信号处理、传感器内和近传感器计算、神经工程、人工智能和后硅技术。教育影响利用了该项目与工程、生物学、物理和化学主题的结合这一事实。参与其中的学生将接受专门的科学培训,这将有助于他们为在多个领域做出贡献做好准备。传统的存储计算机使用一个存储层,该存储层由神经元的循环连接和随机分配的突触权重组成,后面是一个读出层,其非易失性突触权重受过训练。假设存储层和读出层都可以使用具有并置易失性和非易失性存储器的 ICM 组合成单层。这些装置的基本元件是模仿生物膜的组成和功能的绝缘脂质膜。在存在电压激活的离子通道的情况下,这些合成脂质膜可以表现出由膜和离子通道动力学引起的电压依赖性忆阻。这项研究的具体目的是:1)了解如何利用 ICM 的特定属性进行油藏计算; 2)设计适合我们设备在存储层和读出层中的非线性短期记忆动力学的架构,并可能将它们组合成一个单层; 3)使用ICM的交叉阵列进行实验验证; 4) 推广新的储存器架构,使其可以与其他非易失性和易失性忆阻器(本质上可能是固态的)一起使用。该项目由计算和通信基础部(CCF)的软件和硬件基础集群联合资助计算机与信息科学与工程理事会 (CISE) 和刺激竞争研究既定计划 (EPSCoR)。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Joseph Najem其他文献
Joseph Najem的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Joseph Najem', 18)}}的其他基金
Collaborative Research: Embedded Mechano-Intelligence for Soft Robotics
合作研究:软机器人的嵌入式机械智能
- 批准号:
2314559 - 财政年份:2023
- 资助金额:
$ 33.67万 - 项目类别:
Standard Grant
相似国自然基金
二维铁电MOS场效应管的存算逻辑建模及其代数系统研究
- 批准号:62304115
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
离子辐照精准调控SnS2栅极敏感材料缺陷密度增强碳基FET型气体传感器性能的研究
- 批准号:12305330
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
GaN基芯片场效应管异质结亚十纳米空间热输运机理研究
- 批准号:
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
基于离子敏感场效应管和微纳孔道的三维电荷传感系统研究
- 批准号:
- 批准年份:2022
- 资助金额:53 万元
- 项目类别:面上项目
基于平面浮栅FET及脉冲电场传感调控的室温氢气传感研究
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Collaborative Research: FET: Small: Reservoir Computing with Ion-Channel-Based Memristors
合作研究:FET:小型:基于离子通道忆阻器的储层计算
- 批准号:
2403559 - 财政年份:2024
- 资助金额:
$ 33.67万 - 项目类别:
Standard Grant
Collaborative Research: FET: Small: Algorithmic Self-Assembly with Crisscross Slats
合作研究:FET:小型:十字交叉板条的算法自组装
- 批准号:
2329908 - 财政年份:2024
- 资助金额:
$ 33.67万 - 项目类别:
Standard Grant
Collaborative Research: FET: Small: Algorithmic Self-Assembly with Crisscross Slats
合作研究:FET:小型:十字交叉板条的算法自组装
- 批准号:
2329909 - 财政年份:2024
- 资助金额:
$ 33.67万 - 项目类别:
Standard Grant
Collaborative Research: FET: Medium:Compact and Energy-Efficient Compute-in-Memory Accelerator for Deep Learning Leveraging Ferroelectric Vertical NAND Memory
合作研究:FET:中型:紧凑且节能的内存计算加速器,用于利用铁电垂直 NAND 内存进行深度学习
- 批准号:
2312886 - 财政年份:2023
- 资助金额:
$ 33.67万 - 项目类别:
Standard Grant
Collaborative Research: FET: Medium:Compact and Energy-Efficient Compute-in-Memory Accelerator for Deep Learning Leveraging Ferroelectric Vertical NAND Memory
合作研究:FET:中型:紧凑且节能的内存计算加速器,用于利用铁电垂直 NAND 内存进行深度学习
- 批准号:
2312884 - 财政年份:2023
- 资助金额:
$ 33.67万 - 项目类别:
Standard Grant