Collaborative Research: ECO-CBET: Methane Conversion by Merging Atmospheric Plasma with Transition-Metal Catalysis

合作研究:ECO-CBET:通过大气等离子体与过渡金属催化相结合进行甲烷转化

基本信息

  • 批准号:
    2032664
  • 负责人:
  • 金额:
    $ 105.81万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

Methane is the primary component of natural gas and represents an abundant, alternative chemical feedstock to petroleum. Methane is also a potent greenhouse gas, so excess natural gas from oil fields is flared in order to avoid releasing methane into the atmosphere. Converting natural gas and excess methane into liquid fuels and chemicals would be an efficient way to use natural resources and reduce greenhouse gas emissions. This conversion is challenging, however, when utilizing conventional thermal processes. Low temperature plasma reactor technology is an enticing tool for natural gas methane valorization to fuels and chemicals given its capability to activate hydrocarbons at much lower temperature than thermal processes. Not only does this bring potential to improve rates, but also opens the door to more desirable product selectivity. Despite its allure, practical implementation has been impeded by the complexity of the chemical, physical, and transport processes underlying the technology. This research project studies the valorization of natural gas using catalytic processes conducted in atmospheric plasmas. Little is known about the catalytic conversion of methane in plasmas, so understanding this process could translate into more sustainable chemical routes for methane conversion. The research project will be integrated with educational activities that train students to engineer solutions for sustainable energy, a future without pollution and waste, and reducing greenhouse gas emissions.The research project aims to combine two technologies, plasma-promoted methane activation and transition-metal catalysis, to address methane valorization. The physical properties and chemical reactivity of atmospheric methane plasma are not well understood, nor are subsequent reactions of plasma products with transition metal complexes. Microfluidics techniques will be employed to generate plasmas with controllable properties. Then, experiments will be performed to probe the reactivity of plasmas with organic radical acceptors, to understand how plasmas interact with both organic radical acceptors and organometallic complexes, and to explore carbon-carbon and carbon-nitrogen bond formation in methane plasmas. The ultimate objective is to quantify the reactivity of plasmas with organic radical acceptors and transition metal complexes in order to convert methane into larger alkanes, substituted arenes, and amine compounds. Scale-up and intrinsic energy efficiency present potential challenges to the implementation of plasma-assisted chemical conversion processes. This study will uncover novel approaches for increasing methane reactivity and product selectivity to levels needed for translating fundamental findings into industrial applications.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
甲烷是天然气的主要成分,是一种丰富的石油替代化学原料。甲烷也是一种强效温室气体,因此油田中多余的天然气会被燃烧,以避免将甲烷释放到大气中。将天然气和多余的甲烷转化为液体燃料和化学品将是利用自然资源和减少温室气体排放的有效方法。 然而,当利用传统的热处理工艺时,这种转换具有挑战性。低温等离子体反应器技术是一种将天然气甲烷增值为燃料和化学品的诱人工具,因为它能够在比热处理低得多的温度下激活碳氢化合物。这不仅带来了提高生产率的潜力,而且还为更理想的产品选择性打开了大门。尽管它具有吸引力,但该技术背后的化学、物理和传输过程的复杂性阻碍了实际实施。 该研究项目研究利用大气等离子体中进行的催化过程来提高天然气的价值。人们对等离子体中甲烷的催化转化知之甚少,因此了解这一过程可以转化为更可持续的甲烷转化化学路线。该研究项目将与教育活动相结合,培训学生设计可持续能源、没有污染和废物的未来以及减少温室气体排放的解决方案。该研究项目旨在结合两种技术,等离子体促进的甲烷活化和过渡金属催化,解决甲烷增值问题。大气甲烷等离子体的物理性质和化学反应性以及等离子体产物与过渡金属络合物的后续反应尚不清楚。将采用微流体技术来产生具有可控特性的等离子体。然后,将进行实验来探测等离子体与有机自由基受体的反应性,了解等离子体如何与有机自由基受体和有机金属配合物相互作用,并探索甲烷等离子体中碳-碳和碳-氮键的形成。最终目标是量化等离子体与有机自由基受体和过渡金属络合物的反应性,以便将甲烷转化为更大的烷烃、取代的芳烃和胺化合物。规模化和内在能源效率对等离子体辅助化学转化工艺的实施提出了潜在的挑战。这项研究将揭示提高甲烷反应性和产品选择性至将基本发现转化为工业应用所需水平的新方法。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Ryan Hartman其他文献

Entropy in Network Community as an Indicator of Language Structure in Emoji Usage: A Twitter Study Across Various Thematic Datasets
网络社区中的熵作为表情符号使用中语言结构的指标:针对各种主题数据集的 Twitter 研究
Network-Based Delineation of Health Service Areas: A Comparative Analysis of Community Detection Algorithms
基于网络的卫生服务区划定:社区检测算法的比较分析
  • DOI:
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Diego Pinheiro;Ryan Hartman;E. Romero;R. Menezes;M. Cadeiras
  • 通讯作者:
    M. Cadeiras
The Association of Shared Care Networks With 30-Day Heart Failure Excessive Hospital Readmissions: Longitudinal Observational Study
共享护理网络与 30 天心力衰竭过多再入院的关联:纵向观察研究
  • DOI:
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    D. Pinheiro;Ryan Hartman;Jing Mai;E. Romero;Saad Soroya;Carmelo J. A. Bastos;R. Lima;Michael Gibson;I. Ebong;J. Bidwell;M. Nuño;M. Cadeiras
  • 通讯作者:
    M. Cadeiras
CH3 Radical Generation in Microplasmas for Up-Conversion of Methane.
微等离子体中 CH3 自由基的产生用于甲烷的上转换。
  • DOI:
    10.1021/acs.jpca.4c00073
  • 发表时间:
    2024-03-26
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Meyer;Sanjana Kerketta;Ryan Hartman;M. Kushner
  • 通讯作者:
    M. Kushner
Assessing the suitability of network community detection to available meta-data using rank stability
使用排名稳定性评估网络社区检测对可用元数据的适用性

Ryan Hartman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Ryan Hartman', 18)}}的其他基金

Travel: ISCRE 27: Chemical Reaction Engineering for Sustainable Development
旅行:ISCRE 27:促进可持续发展的化学反应工程
  • 批准号:
    2322459
  • 财政年份:
    2023
  • 资助金额:
    $ 105.81万
  • 项目类别:
    Standard Grant
On the Mechanism and Utility of Laser-Induced Nucleation using Microfluidics
微流控激光诱导成核的机制和实用性
  • 批准号:
    2103689
  • 财政年份:
    2021
  • 资助金额:
    $ 105.81万
  • 项目类别:
    Standard Grant
On the Mechanism and Utility of Laser-Induced Nucleation using Microfluidics
微流控激光诱导成核的机制和实用性
  • 批准号:
    2103689
  • 财政年份:
    2021
  • 资助金额:
    $ 105.81万
  • 项目类别:
    Standard Grant
Artificially Intelligent, Autonomous Microreactors for the Discovery of Polyolefin Catalysis
用于发现聚烯烃催化的人工智能自主微反应器
  • 批准号:
    1701393
  • 财政年份:
    2017
  • 资助金额:
    $ 105.81万
  • 项目类别:
    Standard Grant
CAREER: Palladium-Catalyzed C-H Activation/C-C Cross-Coupling of CH4 Hydrates and Plasma using Cyclodextrin Ligand in Multiphase Microsystems
职业:在多相微系统中使用环糊精配体进行钯催化的 CH4 水合物和等离子体的 C-H 活化/C-C 交叉偶联
  • 批准号:
    1551116
  • 财政年份:
    2015
  • 资助金额:
    $ 105.81万
  • 项目类别:
    Continuing Grant
CAREER: Palladium-Catalyzed C-H Activation/C-C Cross-Coupling of CH4 Hydrates and Plasma using Cyclodextrin Ligand in Multiphase Microsystems
职业:在多相微系统中使用环糊精配体进行钯催化的 CH4 水合物和等离子体的 C-H 活化/C-C 交叉偶联
  • 批准号:
    1453062
  • 财政年份:
    2015
  • 资助金额:
    $ 105.81万
  • 项目类别:
    Continuing Grant
Microreaction Engineering of Aqueous Phase Metal Catalyzed Reactions
水相金属催化反应的微反应工程
  • 批准号:
    1550483
  • 财政年份:
    2015
  • 资助金额:
    $ 105.81万
  • 项目类别:
    Standard Grant
Microreaction Engineering of Aqueous Phase Metal Catalyzed Reactions
水相金属催化反应的微反应工程
  • 批准号:
    1264630
  • 财政年份:
    2013
  • 资助金额:
    $ 105.81万
  • 项目类别:
    Standard Grant

相似国自然基金

基于遥感地表反照率的旱区生态系统多稳态研究
  • 批准号:
    42307560
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
水生植物生物多样性-生态系统功能关系的尺度依赖机制研究
  • 批准号:
    32301349
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
全球陆地生态系统生产力对气溶胶的敏感性研究
  • 批准号:
    42375112
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
基于生态系统服务流的三江源国家公园生态保护效益辐射效应与横向生态补偿机制研究
  • 批准号:
    42371303
  • 批准年份:
    2023
  • 资助金额:
    46 万元
  • 项目类别:
    面上项目
华南早-中三叠世海洋底栖生态系统功能和稳定性研究
  • 批准号:
    42372032
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目

相似海外基金

Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
  • 批准号:
    2342497
  • 财政年份:
    2024
  • 资助金额:
    $ 105.81万
  • 项目类别:
    Standard Grant
Collaborative Research: Conference: DESC: Type III: Eco Edge - Advancing Sustainable Machine Learning at the Edge
协作研究:会议:DESC:类型 III:生态边缘 - 推进边缘的可持续机器学习
  • 批准号:
    2342498
  • 财政年份:
    2024
  • 资助金额:
    $ 105.81万
  • 项目类别:
    Standard Grant
Collaborative Research: EPIIC: Developing an Eco Engine Jumpstart Kit
合作研究:EPIIC:开发生态发动机快速启动套件
  • 批准号:
    2331633
  • 财政年份:
    2023
  • 资助金额:
    $ 105.81万
  • 项目类别:
    Standard Grant
Collaborative Research: ORCC: Understanding Organismal Behavioral Responses to Climate Change to Forecast Eco-evolutionary Dynamics of Albatrosses Populations
合作研究:ORCC:了解生物体对气候变化的行为反应以预测信天翁种群的生态进化动态
  • 批准号:
    2222058
  • 财政年份:
    2023
  • 资助金额:
    $ 105.81万
  • 项目类别:
    Standard Grant
Collaborative Research: ECO-CBET: Multi-scale design of liquid hydrogen carriers for spatio-temporal balancing of renewable energy systems
合作研究:ECO-CBET:用于可再生能源系统时空平衡的液氢载体的多尺度设计
  • 批准号:
    2318617
  • 财政年份:
    2023
  • 资助金额:
    $ 105.81万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了