IUCRC Phase I Georgia Institute of Technology: Electronic-Photonic Integrated Circuits for Aerospace (EPICA)
IUCRC 第一阶段佐治亚理工学院:航空航天电子光子集成电路(EPICA)
基本信息
- 批准号:2052808
- 负责人:
- 金额:$ 100万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Continuing Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-06-01 至 2026-05-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
As mankind continues to expand a wide range of activities into space to support essential communications, climate monitoring, research and exploration, it is imperative to establish the viability and safety of key enabling integrated electronics and photonic technologies for operation in harsh environments. Integrated photonics enable systems with unmatched power efficiency, longevity and capability thus improving everything from internet availability and reliability around the planet to improving environmental sensing and enhanced security by enabling robust DoD systems. The objective of Electronic-Photonic Integrated Circuits for Aerospace (EPICA) is to enable the use of increasingly sophisticated electronics and photonics in communications and sensing applications for space-borne and aerospace platforms. The diverse team of component, systems and aerospace researchers will collaborate to advance knowledge of associated environmental considerations, and craft specific components and architectures to meet the unique reliability and performance requirements.EPICA’s objective is to enable the next wave of communications and sensing technologies for aerospace and space-borne platforms. The focus is on investigating the reliability of these devices and systems operating in extreme environments such as space. The project has three major thrusts: i) Assessment, understanding, and development of robust integrated photonic hardware for reliable operation under radiation and temperature extremes; ii) Development of components and architectures using system-level methods and tools to extract maximum advantage of integrated photonic systems for aerospace platforms; iii) Definition of flight hardware and mission architectures for subsequent flight demonstration. A three-university team, comprised of Georgia Tech, The University of Central Florida and Vanderbilt University, with complementary expertise and facilities, will apply both analytical and experimental capabilities to this project. Georgia Tech researchers will define key performance parameters for aerospace systems and develop architectures and components to meet these requirements. These circuits will be fabricated on a variety of integration platforms. The Georgia Tech team will also define and assess the impact of flight requirements including packaging and mission specific environments. The team will work directly with the Vanderbilt team in the design and assessment of components and will collaborate with the CREOL team on architecture and component design.EPICA will advance US-based capabilities in the design and manufacture of robust integrated electronics and photonics, enabling reliable internet access around the planet and creating new environmental sensing capabilities. The EPICA team is also actively creating a diverse workforce that includes a mentoring program designed to increase the success of students from underrepresented groups in areas of advanced photonics, electronics and optical sciences. Each site will engage professional societies and have active Bridge Programs to support and transition underrepresented students from the baccalaureate level to graduate school.A project repository for data, code, results, IAB meeting summaries and publications will be digitally archived. Each site will maintain their own local storage and Georgia Tech will manage a comprehensive cloud storage site accessible to the project partners. The repository will be maintained continuously from the first year and for three years after conclusion of the award.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
随着人类继续将活动扩展到基本的沟通,必须建立安全性的电子设备和刺激性的光子技术。通过启用强大的DOD系统来启用和启用电子通道的目标(EPICA),是在通信和传感器中使用越来越复杂的电子设备和光子脉的使用。系统和航空航天研究人员将协作以促进相关的EnvicironMediders,以及CRA FT特定的组件和体系结构,以满足独特的可靠性和绩效要求。 E项目具有三个主要的推力:I)在辐射极端的稳健光子光子硬件的发展;佛罗里达州和范德比尔特大学的专业知识和设施的能力是佐治亚州的航空航天系统。特定的特定环境。光子学,使互联网可靠,创造了新的环境感应能力。从学士学位级别上支持和过渡的计划。数据,代码,结果,IAB会议摘要和出版物的项目存储库将在每个站点上保持当地存储和佐治亚理工学院。向项目合作伙伴致敬。 。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Inverse-designed, normal incidence polarizing and polarization demultiplexing grating couplers for multi-core fiber
用于多芯光纤的逆向设计、正入射偏振和偏振解复用光栅耦合器
- DOI:
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Michael J. Probst, Alec M.
- 通讯作者:Michael J. Probst, Alec M.
Multi-layer inverse design of vertical grating couplers for high-density, commercial foundry interconnects
用于高密度、商业铸造互连的垂直光栅耦合器的多层逆向设计
- DOI:10.1364/oe.466015
- 发表时间:2022
- 期刊:
- 影响因子:3.8
- 作者:Hammond, Alec M.;Slaby, Joel B.;Probst, Michael J.;Ralph, Stephen E.
- 通讯作者:Ralph, Stephen E.
Inverse-Designed Photonic Polarization Control for High-Density Integration on Foundry Platforms
用于铸造平台上高密度集成的逆向设计光子偏振控制
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:A. Khurana, J. B.
- 通讯作者:A. Khurana, J. B.
Low-Loss High-Density Inverse-Designed Structures for High Power Signal Routing on Integrated Silicon Photonics Foundry Platforms
用于集成硅光子代工平台上高功率信号路由的低损耗高密度逆向设计结构
- DOI:
- 发表时间:2023
- 期刊:
- 影响因子:0
- 作者:Joel B. Slaby, Alec M.
- 通讯作者:Joel B. Slaby, Alec M.
Phase-Injected Topology Optimization for Scalable and Interferometrically Robust Photonic Integrated Circuits
- DOI:10.1021/acsphotonics.2c01016
- 发表时间:2022-11-04
- 期刊:
- 影响因子:7
- 作者:Hammond, Alec M.;Slaby, Joel B.;Ralph, Stephen E.
- 通讯作者:Ralph, Stephen E.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephen Ralph其他文献
Using high pass sigma-delta modulation for Class-S power amplifiers
对 S 类功率放大器使用高通 Σ-Δ 调制
- DOI:
10.1109/ecctd.2007.4529694 - 发表时间:
2007 - 期刊:
- 影响因子:0
- 作者:
Stephen Ralph;R. Farrell - 通讯作者:
R. Farrell
Stephen Ralph的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
热带河口特有鱼类尖鳍鲤早期生活史不同阶段的栖息地利用变化及驱动机制
- 批准号:32360917
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
PPP项目跨阶段监管机制研究
- 批准号:72301115
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
抗生素对不同生长阶段蓝藻光合电子传递和生理代谢的影响及分子机制研究
- 批准号:52300219
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多活性纳米酶多靶点全阶段治疗特发性肺纤维化
- 批准号:32371438
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
基于现代监测的湘西惹迷洞MIS2阶段石笋碳同位素和微量元素记录重建研究
- 批准号:42371164
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
相似海外基金
IUCRC Phase II Georgia Institute of Technology: Building Reliable Advances and Innovations in Neurotechnology (BRAIN)
IUCRC 第二期佐治亚理工学院:在神经技术 (BRAIN) 领域建立可靠的进步和创新
- 批准号:
2310967 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
IUCRC Phase II Georgia Institute of Technology: Center for Advanced Electronics through Machine Learning [CAEML]
IUCRC 第二期佐治亚理工学院:机器学习先进电子学中心 [CAEML]
- 批准号:
2345055 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
IUCRC Phase II Georgia Institute of Technology: Center for Advanced Electronics through Machine Learning [CAEML]
IUCRC 第二期佐治亚理工学院:机器学习先进电子学中心 [CAEML]
- 批准号:
2137259 - 财政年份:2022
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
IUCRC Phase II: University of Georgia: Center for Bioplastics and Biocomposites (CB2)
IUCRC 第二阶段:佐治亚大学:生物塑料和生物复合材料中心 (CB2)
- 批准号:
2113830 - 财政年份:2021
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant
IUCRC Phase I Georgia Institute of Technology: Center for Composite and Hybrid Materials Interfacing (CHMI)
IUCRC 第一阶段佐治亚理工学院:复合材料和混合材料接口中心 (CHMI)
- 批准号:
2052714 - 财政年份:2021
- 资助金额:
$ 100万 - 项目类别:
Continuing Grant