FRG: Collaborative Research: New Challenges in the Derivation and Dynamics of Quantum Systems

FRG:协作研究:量子系统推导和动力学的新挑战

基本信息

  • 批准号:
    2052789
  • 负责人:
  • 金额:
    $ 37.99万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-07-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

The main scientific goal of this project is to study the interplay between certain nonlinear evolution partial differential equations (PDE) and the natural progenitor particle systems from which these equations are derived. The equations considered are fundamental models for wave propagation phenomena ranging from the microscopic (Bose Einstein Condensate) to the macroscopic (rogue waves in deep sea), and for the dynamics of gases (Vlasov equation). To address important challenges in studying these equations, the PIs adopt an innovative approach combining deterministic and probabilistic perspectives. Informed by the qualitative properties of these PDE, the principal objective of this project is to identify the correct analogues of such properties at the many particle level, and to demonstrate that these correspond to the known properties at the PDE level. The award will foster collaborations among US based researchers at various stages of their careers and provide research opportunities and support for students and postdoctoral scholars. Additional activities include three annual research workshops aimed at training, dissemination, and stimulate further research. In their analysis, the PIs consider two different but intimately related research directions at the forefront of mathematical physics, nonlinear PDE and probability. The first direction concerns the derivation of the Hamiltonian structure for nonlinear evolution equations, including kinetic equations such as the Vlasov equation, as well as a novel viewpoint on such derivations guided by Ebin-Marsden's seminal program in the context of hydrodynamics. The second direction is rooted on the integrability of the 1D cubic nonlinear Schrodinger (NLS) equation and pursues two lines of inquiry. One of these questions focuses on exploring the origins of integrability of the 1D cubic NLS through a series of projects aimed at unveiling correct analogues of integrability at the many particle level, and then at demonstrating that these correspond to the known properties at the NLS level. A second line of inquiry stems from the work of Lebowitz, Rose and Speer who posited that the grand canonical ensemble description of equilibrium behavior is expected to be false for integrable PDE. The PIs plan to settle this major open problem by constructing a suitable substitute.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该项目的主要科学目标是研究某些非线性演化偏微分方程(PDE)与推导出这些方程的自然祖先粒子系统之间的相互作用。所考虑的方程是从微观(玻色爱因斯坦凝聚)到宏观(深海中的异常波)波传播现象以及气体动力学(弗拉索夫方程)的基本模型。为了解决研究这些方程的重要挑战,PI 采用了一种结合确定性和概率观点的创新方法。根据这些偏微分方程的定性性质,该项目的主要目标是在许多粒子水平上识别这些性质的正确类似物,并证明这些与偏微分方程水平上的已知性质相对应。该奖项将促进处于职业生涯各个阶段的美国研究人员之间的合作,并为学生和博士后学者提供研究机会和支持。其他活动包括三个旨在培训、传播和促进进一步研究的年度研究研讨会。 在他们的分析中,PI 考虑了数学物理前沿的两个不同但密切相关的研究方向:非线性偏微分方程和概率。第一个方向涉及非线性演化方程的哈密顿结构的推导,包括 Vlasov 方程等动力学方程,以及在流体动力学背景下由 Ebin-Marsden 的开创性计划指导的此类推导的新颖观点。第二个方向植根于一维三次非线性薛定谔 (NLS) 方程的可积性,并追求两条研究路线。其中一个问题的重点是通过一系列项目探索一维立方 NLS 可积性的起源,这些项目旨在揭示多粒子级别的可积性的正确类似物,然后证明这些对应于 NLS 级别的已知属性。第二条探究源于 Lebowitz、Rose 和 Speer 的工作,他们假设均衡行为的宏正则系综描述对于可积偏微分方程预计是错误的。 PI 计划通过构建合适的替代品来解决这一重大的开放问题。该奖项反映了 NSF 的法定使命,并通过使用基金会的智力价值和更广泛的影响审查标准进行评估,被认为值得支持。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
A Rigorous Derivation of a Boltzmann System for a Mixture of Hard-Sphere Gases
硬球气体混合物玻尔兹曼系统的严格推导
  • DOI:
    10.1137/21m1424779
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Ampatzoglou, Ioakeim;Miller, Joseph K.;Pavlović, Nataša
  • 通讯作者:
    Pavlović, Nataša
Global well-posedness of a binary–ternary Boltzmann equation
Poisson commuting energies for a system of infinitely many bosons
  • DOI:
    10.1016/j.aim.2022.108525
  • 发表时间:
    2019-10
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Dana Mendelson;A. Nahmod;Natavsa Pavlovi'c;M. Rosenzweig;G. Staffilani
  • 通讯作者:
    Dana Mendelson;A. Nahmod;Natavsa Pavlovi'c;M. Rosenzweig;G. Staffilani
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Natasa Pavlovic其他文献

Natasa Pavlovic的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Natasa Pavlovic', 18)}}的其他基金

Interacting Particle Systems and Nonlinear Partial Differential Equations
相互作用的粒子系统和非线性偏微分方程
  • 批准号:
    2009549
  • 财政年份:
    2020
  • 资助金额:
    $ 37.99万
  • 项目类别:
    Standard Grant
Many-Body Dynamics and Nonlinear Evolution Equations
多体动力学和非线性演化方程
  • 批准号:
    1516228
  • 财政年份:
    2015
  • 资助金额:
    $ 37.99万
  • 项目类别:
    Continuing Grant
From many body quantum dynamics to nonlinear dispersive PDEs, and back
从许多体量子动力学到非线性色散偏微分方程,然后返回
  • 批准号:
    1101192
  • 财政年份:
    2011
  • 资助金额:
    $ 37.99万
  • 项目类别:
    Continuing Grant
On well-posedness and regularity properties for fluid equations and nonlinear dispersive equations
流体方程和非线性色散方程的适定性和正则性
  • 批准号:
    0758247
  • 财政年份:
    2008
  • 资助金额:
    $ 37.99万
  • 项目类别:
    Standard Grant
Use of Harmonic Analysis Methods for the Equations of Fluid Motion
调和分析方法在流体运动方程中的应用
  • 批准号:
    0304594
  • 财政年份:
    2003
  • 资助金额:
    $ 37.99万
  • 项目类别:
    Standard Grant

相似国自然基金

数智背景下的团队人力资本层级结构类型、团队协作过程与团队效能结果之间关系的研究
  • 批准号:
    72372084
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
颅颌面手术机器人辅助半面短小牵张成骨术的智能规划与交互协作研究
  • 批准号:
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
面向自主认知与群智协作的多智能体制造系统关键技术研究
  • 批准号:
    52305539
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
大规模物联网多协作绿色信息感知和智慧响应决策一体化方法研究
  • 批准号:
    62371149
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
多UAV协作的大规模传感网并发充电模型及其服务机制研究
  • 批准号:
    62362017
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

FRG: Collaborative Research: New birational invariants
FRG:协作研究:新的双有理不变量
  • 批准号:
    2244978
  • 财政年份:
    2023
  • 资助金额:
    $ 37.99万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2245017
  • 财政年份:
    2023
  • 资助金额:
    $ 37.99万
  • 项目类别:
    Standard Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245111
  • 财政年份:
    2023
  • 资助金额:
    $ 37.99万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Variationally Stable Neural Networks for Simulation, Learning, and Experimental Design of Complex Physical Systems
FRG:协作研究:用于复杂物理系统仿真、学习和实验设计的变稳定神经网络
  • 批准号:
    2245077
  • 财政年份:
    2023
  • 资助金额:
    $ 37.99万
  • 项目类别:
    Continuing Grant
FRG: Collaborative Research: Singularities in Incompressible Flows: Computer Assisted Proofs and Physics-Informed Neural Networks
FRG:协作研究:不可压缩流中的奇异性:计算机辅助证明和物理信息神经网络
  • 批准号:
    2244879
  • 财政年份:
    2023
  • 资助金额:
    $ 37.99万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了