Interacting Particle Systems and Nonlinear Partial Differential Equations

相互作用的粒子系统和非线性偏微分方程

基本信息

  • 批准号:
    2009549
  • 负责人:
  • 金额:
    $ 30.94万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-07-15 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

Analysis of large systems of interacting particles is key for predicting and understanding various phenomena arising in different contexts, from physics (in understanding e.g. boson stars) to social studies (when modeling social networks). Since the number of particles is usually very large one would like to understand qualitative and quantitative properties of such systems of particles through some macroscopic, averaged characteristics. In order to identify macroscopic behavior of multi-particle systems, it is helpful to study the asymptotic behavior when the number of particles approaches infinity, with the assumption that the limit will approximate properties observed in the systems with a large finite number of particles. An example of an important phenomenon that describes such macroscopic behavior of a large system of particles is the Bose-Einstein condensation (BEC), which is a state of the matter of a dilute Bose gas at very low temperatures when the gas moves as a single particle. Although the BEC was predicted in early days of quantum mechanics by Bose and Einstein, the first experimental realization came in 1995 (subsequently recognized by a Nobel Prize in physics in 2001). Mathematical models have been developed to understand such phenomena. Those models connect large quantum systems of interacting particles and nonlinear partial differential equations (PDE) that are derived from such systems in the limit of the number of particles going to infinity. However there are still many challenging problems on both ends, that could benefit from an interdisciplinary perspective, and the Principal Investigator will work on these. The PI will continue to explore diverse ways to disseminate the knowledge obtained from the proposed projects via designing and teaching new courses (e.g. the PI designed and taught multiple courses for graduate students at summer schools), training and mentoring graduate students and postdocs, and via organizing as well as attending seminars and research meetings.problems. With fundamental works on derivation of effective equations from quantum many body systems (e.g. nonlinear Schrodinger equation) and effective equations from classical many particle systems (e.g. Boltzmann equation) a new channel of communication between mathematical physics and nonlinear PDE communities has opened, contributing to advances in both areas. In particular, recently remarkable progress has been achieved in the rigorous derivation of nonlinear Schroedinger (NLS) equations from quantum systems of interacting bosons. Motivated by that progress, about a decade ago, the PI and her colleague Chen started studying connections between quantum many particle systems and NLS equation, and consequently together with their collaborators (including 11 PhD students and 3 postdocs) they developed the program of studying quantum many particle systems via ideas and techniques that originated in the context of 1 particle nonlinear PDE, namely the NLS. In the current project, the PI and collaborators will significantly expand the span of the above program to include: derivation of qualitative aspects of nonlinear PDE, such as being Hamiltonian or integrable, and Analysis of classical systems of particles that lead to new kinetic equations.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
对大型相互作用粒子系统的分析是预测和理解在不同情况下(从物理学(例如,例如玻色子星)到社会研究(建模社交网络)的不同情况下产生的各种现象。由于颗粒的数量通常很大,因此希望通过某些宏观的平均特征来理解此类粒子系统的定性和定量特性。为了识别多粒子系统的宏观行为,当颗粒数量接近无穷大时,研究渐近行为是有帮助的,假设极限将在具有较大有限粒子数量的系统中观察到的限制。一个重要现象的一个例子,描述了大型颗粒系统的这种宏观行为的是Bose-Einstein凝结(BEC),它是当气体作为单个气体移动时在非常低的温度下稀释的Bose气体问题的状态粒子。尽管Bose和Einstein在量子力学的早期预测了BEC,但第一个实验性实现是在1995年(随后在2001年获得诺贝尔物理学奖的)。已经开发了数学模型来理解这种现象。 这些模型将相互作用颗粒的大量子系统和非线性偏微分方程(PDE)连接起来,这些系统是从此类系统中得出的,以无限段的颗粒数量的极限。但是,两端仍然存在许多具有挑战性的问题,这可能从跨学科的角度受益,主要研究人员将致力于这些问题。 PI将继续探索通过设计和教授新课程从拟议项目中获得的知识传播的多种方式(例如,PI设计和教授暑期学校的研究生多个课程),培训和指导研究生和博士后,以及通过组织和参加研讨会和研究会议。问题。 借助从量子推导有效方程的基本工作,许多身体系统(例如非线性schrodinger方程)和经典的许多粒子系统(例如Boltzmann方程)的有效方程式(例如,Boltzmann方程)是数学物理学和非线性PDE社区之间的新通信渠道在这两个地区。特别是,最近在相互作用玻色子的量子系统的非线性Schroedinger(NLS)方程的严格推导中取得了显着的进步。在大约十年前,PI和她的同事Chen开始研究量子许多粒子系统和NLS方程之间的连接,因此,在大约十年前,他们的合作者(包括11名Phd学生和3名PostDocs),他们开发了研究量子的计划,从而开发了研究量子的计划许多粒子系统通过源自1个粒子非线性PDE的上下文的思想和技术,即NLS。 在当前项目中,PI和合作者将大大扩展上述程序的跨度,包括:非线性PDE定性方面的推导,例如是哈密顿量或可集成的,以及对导致新动力学方程的经典粒子系统的分析。该奖项反映了NSF的法定使命,并通过使用基金会的知识分子和更广泛的影响审查标准进行评估而被认为值得支持。

项目成果

期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Small Data Global Well-Posedness for a Boltzmann Equation via Bilinear Spacetime Estimates
通过双线性时空估计的玻尔兹曼方程的小数据全局适定性
Global well-posedness of a binary–ternary Boltzmann equation
Susan Friedlander's Contributions in Mathematical Fluid Dynamics
苏珊·弗里德兰德 (Susan Friedlander) 在数学流体动力学方面的贡献
  • DOI:
    10.1090/noti2237
  • 发表时间:
    2021
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Cheskidov, Alexey;Glatt-Holtz, Nathan;Pavlovic, Natasa;Shvydkoy, Roman;Vicol, Vlad
  • 通讯作者:
    Vicol, Vlad
A Rigorous Derivation of a Boltzmann System for a Mixture of Hard-Sphere Gases
硬球气体混合物玻尔兹曼系统的严格推导
  • DOI:
    10.1137/21m1424779
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    2
  • 作者:
    Ampatzoglou, Ioakeim;Miller, Joseph K.;Pavlović, Nataša
  • 通讯作者:
    Pavlović, Nataša
Poisson commuting energies for a system of infinitely many bosons
  • DOI:
    10.1016/j.aim.2022.108525
  • 发表时间:
    2019-10
  • 期刊:
  • 影响因子:
    1.7
  • 作者:
    Dana Mendelson;A. Nahmod;Natavsa Pavlovi'c;M. Rosenzweig;G. Staffilani
  • 通讯作者:
    Dana Mendelson;A. Nahmod;Natavsa Pavlovi'c;M. Rosenzweig;G. Staffilani
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Natasa Pavlovic其他文献

Natasa Pavlovic的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Natasa Pavlovic', 18)}}的其他基金

FRG: Collaborative Research: New Challenges in the Derivation and Dynamics of Quantum Systems
FRG:协作研究:量子系统推导和动力学的新挑战
  • 批准号:
    2052789
  • 财政年份:
    2021
  • 资助金额:
    $ 30.94万
  • 项目类别:
    Standard Grant
Many-Body Dynamics and Nonlinear Evolution Equations
多体动力学和非线性演化方程
  • 批准号:
    1516228
  • 财政年份:
    2015
  • 资助金额:
    $ 30.94万
  • 项目类别:
    Continuing Grant
From many body quantum dynamics to nonlinear dispersive PDEs, and back
从许多体量子动力学到非线性色散偏微分方程,然后返回
  • 批准号:
    1101192
  • 财政年份:
    2011
  • 资助金额:
    $ 30.94万
  • 项目类别:
    Continuing Grant
On well-posedness and regularity properties for fluid equations and nonlinear dispersive equations
流体方程和非线性色散方程的适定性和正则性
  • 批准号:
    0758247
  • 财政年份:
    2008
  • 资助金额:
    $ 30.94万
  • 项目类别:
    Standard Grant
Use of Harmonic Analysis Methods for the Equations of Fluid Motion
调和分析方法在流体运动方程中的应用
  • 批准号:
    0304594
  • 财政年份:
    2003
  • 资助金额:
    $ 30.94万
  • 项目类别:
    Standard Grant

相似国自然基金

磁有序系统的对称群与新型准粒子
  • 批准号:
    12374166
  • 批准年份:
    2023
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
非生物多粒子系统通过瓶颈的相变机理研究
  • 批准号:
    12364029
  • 批准年份:
    2023
  • 资助金额:
    31 万元
  • 项目类别:
    地区科学基金项目
激光增材制造粒子加速器真空系统复杂部件材料真空性能优化研究
  • 批准号:
    12375321
  • 批准年份:
    2023
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
格点和完全图上的交互粒子系统的流体动力学及相关
  • 批准号:
    12371142
  • 批准年份:
    2023
  • 资助金额:
    43.5 万元
  • 项目类别:
    面上项目
单粒子效应对基于纳米级异构多核SoC的卷积神经网络系统影响机理研究
  • 批准号:
    12305303
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

CAREER: Interacting Particle Systems and their Mean-Field PDEs: when nonlinear models meet data
职业:相互作用的粒子系统及其平均场偏微分方程:当非线性模型遇到数据时
  • 批准号:
    2340762
  • 财政年份:
    2024
  • 资助金额:
    $ 30.94万
  • 项目类别:
    Continuing Grant
Understanding plasticity of metals through mean-field limits of stochastic interacting particle systems
通过随机相互作用粒子系统的平均场限制了解金属的可塑性
  • 批准号:
    24K06843
  • 财政年份:
    2024
  • 资助金额:
    $ 30.94万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Mean-Field and Singular Limits of Deterministic and Stochastic Interacting Particle Systems
确定性和随机相互作用粒子系统的平均场和奇异极限
  • 批准号:
    2345533
  • 财政年份:
    2023
  • 资助金额:
    $ 30.94万
  • 项目类别:
    Standard Grant
Interacting Particle Systems and Beyond
相互作用的粒子系统及其他
  • 批准号:
    2348756
  • 财政年份:
    2023
  • 资助金额:
    $ 30.94万
  • 项目类别:
    Standard Grant
Mean-Field and Singular Limits of Deterministic and Stochastic Interacting Particle Systems
确定性和随机相互作用粒子系统的平均场和奇异极限
  • 批准号:
    2206085
  • 财政年份:
    2022
  • 资助金额:
    $ 30.94万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了