RAPID: Combining Big Data in Transportation with Hospital Health Data to Build Realistic "Flattening the Curves" Models during the COVID-19 Outbreak
RAPID:将交通大数据与医院健康数据相结合,在 COVID-19 爆发期间构建现实的“压平曲线”模型
基本信息
- 批准号:2027678
- 负责人:
- 金额:$ 8.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-01 至 2022-04-30
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The outbreak of COVID-19 in the U.S. provides an important opportunity for researchers to improve flattening curve models which can be used to assess and even spatially optimize health care during a rapidly expanding pandemic. This Rapid Response Research (RAPID) project will take advantage of the large-scale availability of location-sensing devices and apps that produce big data on mobility patterns that can be used to better optimize the use of healthcare facilities. This research brings together rapidly unfolding health data with real-time data on mobility. We will examine how these two critical data resources can be linked to better inform policy, identify emerging hotspots, and target critical actions during a pandemic. This research will help public officials to better understand and adapt to changing conditions as a health emergency arises and expands.The spread of the “flattening curves” graphic was significant in promoting public understanding of the criticality of social distancing. These curves, however, were based on simulated data. This research will collect and examine mobility data and public health data to model flattening curves using real data. We combine big data from location-based apps and cellphones with Electronic Medical records from UMMS hospitals, including data on COVID-19 tests, and patient demographics and prognostics. New modeling approaches that quantitatively measure change in collective movement behaviors in response to the fast-evolving COVID-19 outbreak will be linked to hospital usage and capacity. The methods of this research will extend our knowledge of highly integrated systems, like transportation and health, and better prepare the public for future disasters.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
美国新冠肺炎 (COVID-19) 的爆发为研究人员改进平坦曲线模型提供了重要机会,该模型可用于在快速蔓延的大流行期间评估甚至空间优化医疗保健。该快速响应研究 (RAPID) 项目将利用这一点。位置传感设备和应用程序的大规模可用性,可产生有关移动模式的大数据,可用于更好地优化医疗保健设施的使用。我们将把快速展开的健康数据与实时移动数据结合起来。检查这两个关键的可以将数据资源联系起来,以便更好地为政策提供信息,确定新出现的热点,并在大流行期间采取关键行动。这项研究将帮助政府官员更好地了解和适应突发卫生事件发生和扩大时不断变化的情况。 “曲线”图对于促进公众对社会距离的重要性的理解具有重要意义,但是,这项研究将收集和检查流动性数据和公共卫生数据,以使用真实数据来模拟平坦曲线。大数据来自基于位置的应用程序和手机,包含来自 UMMS 医院的电子病历,包括 COVID-19 测试数据以及患者人口统计和预后数据,通常用于衡量集体运动行为的变化,以应对快速发展的 COVID-19。疫情爆发将与医院的使用和容量联系起来。这项研究的方法将扩展我们对高度集成的系统(如交通和健康)的了解,并更好地为公众应对未来的灾难做好准备。该奖项反映了 NSF 的法定使命,并被认为是值得的。通过评估提供支持基金会的智力价值和更广泛的影响审查标准。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Are stay-at-home orders more difficult to follow for low-income groups?
对于低收入群体来说,居家令是否更难遵守?
- DOI:10.1016/j.jtrangeo.2020.102894
- 发表时间:2020-12
- 期刊:
- 影响因子:6.1
- 作者:Lou J;Shen X;Niemeier D
- 通讯作者:Niemeier D
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Debbie Niemeier其他文献
Debbie Niemeier的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Debbie Niemeier', 18)}}的其他基金
Workshop to Develop a Framework for Community-Engaged Environmental Engineering Research
制定社区参与环境工程研究框架的研讨会
- 批准号:
2002824 - 财政年份:2019
- 资助金额:
$ 8.92万 - 项目类别:
Standard Grant
Workshop to Develop a Framework for Community-Engaged Environmental Engineering Research
制定社区参与环境工程研究框架的研讨会
- 批准号:
1935433 - 财政年份:2019
- 资助金额:
$ 8.92万 - 项目类别:
Standard Grant
NRT-IGE: Data Science for the Built Environment
NRT-IGE:建筑环境的数据科学
- 批准号:
1545193 - 财政年份:2015
- 资助金额:
$ 8.92万 - 项目类别:
Standard Grant
A New Model for Producing Highly Resolved Mobile Source Emissions
产生高分辨率移动源排放的新模型
- 批准号:
0302538 - 财政年份:2003
- 资助金额:
$ 8.92万 - 项目类别:
Continuing Grant
Engineering Leadership Conference for Women in Academics, Denver, CO; October 11-15, 2000
女性学者工程领导会议,科罗拉多州丹佛;
- 批准号:
0000374 - 财政年份:2000
- 资助金额:
$ 8.92万 - 项目类别:
Standard Grant
Engineering Emerging Urban Systems: Competing Land Uses, and the Effects on Built and Natural Environments
新兴城市系统工程:土地利用竞争以及对建筑和自然环境的影响
- 批准号:
9817698 - 财政年份:1999
- 资助金额:
$ 8.92万 - 项目类别:
Standard Grant
CAREER: Optimizing the Selection of Added Capacity Trans- portation Infrastructure Improvements
事业:优化增加容量的交通基础设施改进的选择
- 批准号:
9703319 - 财政年份:1997
- 资助金额:
$ 8.92万 - 项目类别:
Standard Grant
相似国自然基金
新型大跨弦支钢-混凝土组合楼盖体系的受力性能研究
- 批准号:52108181
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
大尺寸FRP-混凝土-钢组合空心柱的抗冲击性能试验及理论研究
- 批准号:
- 批准年份:2019
- 资助金额:60 万元
- 项目类别:面上项目
基于受激布里渊散射与激光诱导击穿组合压缩的大能量皮秒激光产生研究
- 批准号:61905064
- 批准年份:2019
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
基于索-梁组合结构的大跨斜拉桥BFRP拉索参数激励非线性振动机理研究
- 批准号:51808265
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
大容量可逆固体氧化物燃料电池系统中的电力电子变换理论与技术研究
- 批准号:51877117
- 批准年份:2018
- 资助金额:65.0 万元
- 项目类别:面上项目
相似海外基金
Cross-cultural analysis of changes in news coverage on COVID-19 in Japanese, German and American media combining qualitative text analysis and big data machine learning
结合定性文本分析和大数据机器学习,对日本、德国和美国媒体中关于 COVID-19 的新闻报道变化进行跨文化分析
- 批准号:
21K13444 - 财政年份:2021
- 资助金额:
$ 8.92万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Combining data sources to identify effect moderation for personalized mental health treatment
结合数据源来确定个性化心理健康治疗的效果调节
- 批准号:
10471956 - 财政年份:2021
- 资助金额:
$ 8.92万 - 项目类别:
Big Data- Good Data: Understanding Society by combining survey data and new forms of data
大数据-好数据:结合调查数据和新数据形式了解社会
- 批准号:
2815847 - 财政年份:2021
- 资助金额:
$ 8.92万 - 项目类别:
Studentship
Combining data sources to identify effect moderation for personalized mental health treatment
结合数据源来确定个性化心理健康治疗的效果调节
- 批准号:
10471956 - 财政年份:2021
- 资助金额:
$ 8.92万 - 项目类别:
Combining information from multiple circadian activity rhythm metrics to optimally detect mild cognitive impairment using a consumer wearable
结合多个昼夜节律活动指标的信息,使用消费者可穿戴设备以最佳方式检测轻度认知障碍
- 批准号:
10300129 - 财政年份:2021
- 资助金额:
$ 8.92万 - 项目类别: