Functionally Graded Metallic Materials by Directed Energy Deposition Additive Manufacturing: Computational Design, Fabrication and Validation

通过定向能量沉积增材制造实现功能梯度金属材料:计算设计、制造和验证

基本信息

  • 批准号:
    2050069
  • 负责人:
  • 金额:
    $ 55.27万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-05-01 至 2025-04-30
  • 项目状态:
    未结题

项目摘要

The layer-by-layer process of additive manufacturing enables the controlled variation of material compositions, and therefore, properties, as a function of locations in a fabricated part. Such a unique capability has the potential to drastically transform the engineering design paradigm, inspiring innovative structures with spatially tailored multi-functional properties (e.g., physical, mechanical and thermal, etc.), which are strongly desired in many applications such as turbine blades. However, the complexity of phase formation resulted from the simultaneous deposition of disparate materials during additive manufacturing is least understood and hinders the ability to not only design, but also successfully produce materials of required functional gradients. This award supports fundamental research aimed at enabling the design and fabrication of functionally graded metallic materials using the laser powder-fed directed energy deposition process. The present research endeavors to develop comprehensive understanding of phase formation and transformations during layer-wise making of multi-component systems using integrated computational and experimental tools. In addition to its potential to reignite U.S. manufacturing, additive manufacturing’s power in tailoring properties within complex three-dimensional components will also significantly expand the design space and yield structures with enhanced integrity. The multidisciplinary nature of the research methodologies, along with crafted educational and outreach activities, will impact workforce development through the engagement of graduate and undergraduate students as well as the broader manufacturing community.The objective of the present research is to uncover the underlying mechanism of phase formation during the fabrication, via directed energy deposition additive manufacturing, of functionally graded metallic materials. The research will include the construction of a new multi-component thermodynamic database covering the complete compositional space of interest using novel high throughput first-principles calculations, deep neural network machine learning models, and high throughput thermodynamic modeling tools with uncertainty quantification. With this database, a combination of thermodynamic phase equilibrium calculations and kinetic phase transformation simulations will be used for phases formation predictions. The models will be applied to design compositional pathways between two metallic alloys, in a nonlinear fashion, for successful gradients in order to, e.g., avoid detrimental intermetallic phases. The designed functionally graded materials will be realized using a directed energy deposition machine and blending two different powders (titanium alloy and iron-nickel alloy) varying along the build height according to the design. Further, the compositions, microstructures and mechanical properties of fabricated parts will be thoroughly characterized and quantitatively compared with simulation results to refine the computational models.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
添加剂制造的逐层过程可以使材料组成的受控变化,因此可以作为属性作为制造部分中位置的函数。如此独特的能力有可能极大地改变工程设计范式,从而激发了具有空间量身定制的多功能特性(例如物理,机械和热力学等)的创新结构,这些特性在许多应用中是在涡轮刀片等许多应用中都非常需要的。然而,最不理理解的是,在添加剂制造过程中简单的材料的简单沉积而产生的相位形成的复杂性,不仅可以设计设计,而且会成功生产所需功能梯度的材料。该奖项支持旨在使用激光粉末喂养的定向能量沉积过程来实现功能分级金属材料的设计和结构的基础研究。目前的研究努力使用集成的计算和实验工具在多组分系统的一层制造过程中对相位形成和转换进行全面了解。除了重新启动美国制造业的潜力外,其他制造业在复杂的三维组件中量身定制属性的功能还将显着扩展设计空间和产量结构,并具有增强的完整性。 The multidisciplinary nature of the research methods, along with crafted educational and outreach Activities, will impact workforce development through the engagement of graduate and undergraduate students as well as the broader manufacturing community.The objective of the present research is to uncover the underlying mechanism of phase formation during the fabrication, via directed energy deposition additive manufacturing, of functionally graded metallic materials.这项研究将包括建造一个新的多组分热力学数据库,该数据库涵盖了使用新型的高吞吐量第一原理计算,深度神经网络机器学习模型以及具有不确定性量化的高吞吐量热力学建模工具。使用此数据库,将使用热力学相等计算和动力学相变模拟的组合来进行阶段形成预测。这些模型将以非线性方式应用于两种金属合金之间的组合途径,以使其成功的梯度,以避免避免有害的金属间阶段。设计的功能分级材料将使用定向的能源沉积机,并根据设计将两种不同的粉末(钛合金和铁核合金)融合,并根据设计沿构建高度变化。此外,与模拟结果相比,将对制造零件的组成,微观结构和机械性能进行彻底表征和定量,以完善计算模型。该奖项反映了NSF的法定任务,并通过使用基金会的智力优点和更广泛的影响审查标准,通过评估来诚实地认为通过评估。

项目成果

期刊论文数量(14)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Zentropy Theory for Positive and Negative Thermal Expansion
Effect of heat treatment on functionally graded 304L stainless steel to Inconel 625 fabricated by directed energy deposition
热处理对定向能量沉积制备的功能梯度 304L 不锈钢至 Inconel 625 的影响
  • DOI:
    10.1016/j.mtla.2024.102067
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Yang, Zhening;Sun, Hui;Shang, Shun-Li;Liu, Zi-Kui;Beese, Allison M.
  • 通讯作者:
    Beese, Allison M.
Building materials genome from ground‐state configuration to engineering advance
DFTTK: Density Functional Theory ToolKit for high-throughput lattice dynamics calculations
  • DOI:
    10.1016/j.calphad.2021.102355
  • 发表时间:
    2021-07
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Yi Wang;Mingqing Liao;B. Bocklund;Peng Gao;S. Shang;Hojong Kim;A. Beese;Long-Qing Chen;Zi-kui Liu
  • 通讯作者:
    Yi Wang;Mingqing Liao;B. Bocklund;Peng Gao;S. Shang;Hojong Kim;A. Beese;Long-Qing Chen;Zi-kui Liu
Genomic materials design: CALculation of PHAse Dynamics
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Allison Beese其他文献

Allison Beese的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Allison Beese', 18)}}的其他基金

Multi-Scale Experimental and Computational Investigation of Microscale Origins of Ductile Failure
延性破坏微观起源的多尺度实验和计算研究
  • 批准号:
    2334678
  • 财政年份:
    2024
  • 资助金额:
    $ 55.27万
  • 项目类别:
    Standard Grant
CAREER: Investigating the Micromechanics of Fracture in Additively Manufactured Metals
职业:研究增材制造金属断裂的微观力学
  • 批准号:
    1652575
  • 财政年份:
    2017
  • 资助金额:
    $ 55.27万
  • 项目类别:
    Standard Grant
In Situ Characterization of Effect of Rapid Thermal Cycling During Additive Manufacturing on Deformation-Induced Transformations and Micro-Mechanical Properties
增材制造过程中快速热循环对变形引起的转变和微机械性能影响的原位表征
  • 批准号:
    1402978
  • 财政年份:
    2014
  • 资助金额:
    $ 55.27万
  • 项目类别:
    Standard Grant

相似国自然基金

分级结构软炭—合金化金属—硬炭复合材料的构筑及储钠性能研究
  • 批准号:
    52371222
  • 批准年份:
    2023
  • 资助金额:
    52.00 万元
  • 项目类别:
    面上项目
面向宽波段双光子微腔激光的染料/金属—有机框架分级晶体
  • 批准号:
    52302200
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
分级孔碳载晶体—非晶双相金属磷化物电催化剂的设计构筑及电解水性能研究
  • 批准号:
    52374312
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
质子型低共熔溶剂接力萃取分级回收废旧锂电池中有价金属及机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
旋流分级和微纳米气泡强化场地复合重金属污染土壤异位洗涤机理研究
  • 批准号:
    52270159
  • 批准年份:
    2022
  • 资助金额:
    54.00 万元
  • 项目类别:
    面上项目

相似海外基金

Fabrication of functionally graded porous aluminum and its deformation behavior estimation by image-based analysis
功能梯度多孔铝的制造及其基于图像分析的变形行为估计
  • 批准号:
    23760649
  • 财政年份:
    2011
  • 资助金额:
    $ 55.27万
  • 项目类别:
    Grant-in-Aid for Young Scientists (B)
Fabrication of Biodegradable Fiber Reinforced Ti Functionally Graded Materials and Their Wear Properties
可生物降解纤维增强钛功能梯度材料的制备及其耐磨性能
  • 批准号:
    17560604
  • 财政年份:
    2005
  • 资助金额:
    $ 55.27万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Application of Electromagnetic Force to Fabrication of Aluminum-matrix Composites Locally Reinforced with Particles
电磁力在颗粒局部增强铝基复合材料制备中的应用
  • 批准号:
    15206083
  • 财政年份:
    2003
  • 资助金额:
    $ 55.27万
  • 项目类别:
    Grant-in-Aid for Scientific Research (A)
DEVELOPMENT OF LIGHT WEIGHT Ll_2-Al_3Ti ALLOYS AND FORMATION OF GRADED OXIDATION-RESISTANT LAYER FOR TiAl ALLOYS.
轻质Ll_2-Al_3Ti合金的研制及TiAl合金梯度抗氧化层的形成。
  • 批准号:
    12450285
  • 财政年份:
    2000
  • 资助金额:
    $ 55.27万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Formation of photo-thermoelectric energy conversion functional films by controlling film structure in nanometer scale.
通过纳米尺度控制薄膜结构形成光热电能量转换功能薄膜。
  • 批准号:
    10650649
  • 财政年份:
    1998
  • 资助金额:
    $ 55.27万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了