CAREER: Extracellular Barriers to Adeno-Associated Viral Gene Therapy

职业:腺相关病毒基因治疗的细胞外屏障

基本信息

  • 批准号:
    2047794
  • 负责人:
  • 金额:
    $ 60.61万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-04-01 至 2026-03-31
  • 项目状态:
    未结题

项目摘要

Gene therapy offers the means to potentially cure or halt the progression of diseases with known genetic origins (e.g. cystic fibrosis) or with known genetic modifiers (e.g. cancer). Virus-based approaches have been primarily used for gene therapy applications, as they possess the natural ability to efficiently deliver genetic cargo to target tissues. Adeno-associated virus (AAV) has emerged as a leading therapeutic gene delivery system and recently became the 1st virus to be granted approval by the Food and Drug Administration (FDA) for clinical use. Given its growing and broad potential utility, it is important to understand how AAV traffics and distributes throughout the body to ensure it is a safe and effective modality for gene therapy applications. Prior work has shown that the interactions of AAV with components of the bloodstream and tissues like the brain, liver, and heart can cause inactivation or limit penetration of AAV within target organs. The aim of this NSF CAREER project is to develop the tools necessary to comprehensively assess these biological barriers to AAV gene therapy in order to optimize its performance and maximize therapeutic benefits in diseases such as arthritis, cancer, and hemophilia. The project includes a synergistic education plan that promotes research exposure and awareness of career opportunities for URM students, enhances undergraduate courses and provides training opportunities in research for undergraduate, graduate, and postdoctoral researchers from diverse backgrounds. Specific activities include developing a summer research immersion and educational lab activity development program for science teachers in Baltimore City and incorporating new lab modules focused on nano- and microparticle transport in blood into an undergraduate course on biofluids. The long-term goal of this CAREER project is to build quantitative tools to support the development and rational design of gene therapies using natural and novel bioengineered AAVs. Though AAV shows serotype-dependent interactions with serum proteins in the blood that can either inhibit or enhance AAV-mediated gene transfer, it is unknown if these interactions with serum proteins promote or compromise the stability of AAV in circulation. In addition, target receptors used for cell entry by many AAV serotypes (e.g. heparan sulfate) are present at high levels in the extracellular matrix (ECM), which could lead to adhesion of AAV to the ECM and as a result, poor distribution in target tissues. However, these potential barriers to effective AAV gene therapy have not been studied. To address this issue, the investigator will pursue three research objectives: (1) characterize AAV-serum interactions and protein corona formation, (2) examine AAV stability in whole blood under physiological flow conditions, and (3) evaluate AAV diffusion through ECM and ex vivo tissues. The investigator will use expertise in measuring and modeling protein adsorption at interfaces, protein-mediated particle aggregation, and diffusion of nanoscale particles in 3D biological matrices to understand the behavior of AAV in the blood and tissue microenvironment. The results of these objectives will be interpreted with analytical models to determine (1) how competitive adsorption of serum proteins and protein corona formation on AAV particles influences their stability in circulation and (2) how tissue-specific properties of ECM (e.g. density and composition) influence distribution of AAV within target organs. If successful, this work will establish new assays that are generalizable to viral gene therapeutics and can be used as an additional screening tool for pre-clinical studies.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
基因疗法提供了潜在地治愈或停止具有已知遗传起源(例如囊性纤维化)或已知遗传修饰剂(例如癌症)的疾病进展的方法。基于病毒的方法主要用于基因治疗应用,因为它们具有有效地将遗传货物运送到靶组织的自然能力。腺相关病毒(AAV)已成为领先的治疗基因递送系统,最近成为食品药品监督管理局(FDA)批准的第一个病毒以供临床使用。鉴于其不断增长且广泛的潜在效用,重要的是要了解AAV流量和分布方式如何在整个人体中分发,以确保它是基因治疗应用的安全有效方式。先前的工作表明,AAV与大脑,肝脏和心脏等血液和组织的组成部分的相互作用会导致AAV在靶器官中的灭活或限制渗透。 NSF职业项目的目的是开发必要的工具,以全面评估AAV基因疗法的这些生物学障碍,以优化其性能并最大程度地利用关节炎,癌症和血友病等疾病中的治疗益处。该项目包括一项协同的教育计划,该计划促进了URM学生的研究曝光和对职业机会的认识,增强本科课程,并为来自不同背景的学科,研究生和博士后研究人员提供研究机会。 特定的活动包括为巴尔的摩市的科学教师开发夏季研究和教育实验室活动发展计划,并将重点关注纳米和微颗粒运输的新实验室模块纳入血液中的纳米和微颗粒传输中,以成为生物流体的本科课程。 该职业项目的长期目标是建立定量工具,以使用自然和新颖的生物工程AAV来支持基因疗法的开发和合理设计。 尽管AAV在血液中与血清型相互作用,可以抑制或增强AAV介导的基因转移,但这些与血清蛋白的相互作用是否促进或损害了AAV在循环中的稳定性,但尚不清楚。此外,在细胞外基质(ECM)中,许多AAV血清型(例如,硫酸乙酰肝素)用于细胞进入细胞的靶基受体存在,这可能导致AAV粘附于ECM,结果可能导致目标组织的分布较差。但是,尚未研究这些有效AAV基因疗法的潜在障碍。 为了解决这个问题,研究者将追求三个研究目标:(1)表征AAV-Serum相互作用和蛋白质电晕的形成,(2)在生理流动条件下检查全血的AAV稳定性,(3)评估通过ECM和EXBIVO组织的AAV扩散。研究者将使用专业知识在界面,蛋白质介导的颗粒聚集以及纳米级颗粒在3D生物基质中的扩散来测量和建模蛋白质吸附,以了解AAV在血液和组织微环境中的行为。这些目标的结果将用分析模型来解释,以确定(1)血清蛋白质和蛋白质电晕形成在AAV颗粒上的竞争吸附如何影响其在循环中的稳定性,以及(2)ECM(例如,密度和组成)如何影响AAV在靶向器官中AAV的分布。如果成功的话,这项工作将建立可推广到病毒基因疗法的新测定法案,并可以用作临床前研究的额外筛选工具。该奖项反映了NSF的法定任务,并被认为值得通过基金会的知识分子优点和更广泛的影响标准通过评估来进行评估。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Shaping Nanoparticle Diffusion through Biological Barriers to Drug Delivery
  • DOI:
    10.1016/j.jciso.2021.100025
  • 发表时间:
    2021-01-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lee, B.J.;Cheema, Y.;Duncan, G.A.
  • 通讯作者:
    Duncan, G.A.
Integrative approaches to enhance adeno-associated viral gene delivery
  • DOI:
    10.1016/j.jconrel.2021.11.013
  • 发表时间:
    2021-11-21
  • 期刊:
  • 影响因子:
    10.8
  • 作者:
    Duncan, Gregg A.
  • 通讯作者:
    Duncan, Gregg A.
High-Density Branched PEGylation for Nanoparticle Drug Delivery
  • DOI:
    10.1007/s12195-022-00727-x
  • 发表时间:
    2022-07-05
  • 期刊:
  • 影响因子:
    2.8
  • 作者:
    Cahn, Devorah;Duncan, Gregg A.
  • 通讯作者:
    Duncan, Gregg A.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gregg Duncan其他文献

Machine learning-informed timescale dependent modes of nanoparticle diffusion through human mucus
  • DOI:
    10.1016/j.bpj.2021.11.2090
  • 发表时间:
    2022-02-11
  • 期刊:
  • 影响因子:
  • 作者:
    Logan Kaler;Katherine Joyner;Gregg Duncan
  • 通讯作者:
    Gregg Duncan
Determinants of Influenza a Diffusion Through the Mucus Barrier to Infection
  • DOI:
    10.1016/j.bpj.2019.11.2518
  • 发表时间:
    2020-02-07
  • 期刊:
  • 影响因子:
  • 作者:
    Logan Kaler;Shahed Bader;Gregg Duncan
  • 通讯作者:
    Gregg Duncan

Gregg Duncan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gregg Duncan', 18)}}的其他基金

I-Corps: Translation Potential of Rapid In-situ Forming Gel for Local Gene Delivery
I-Corps:快速原位形成凝胶用于局部基因传递的转化潜力
  • 批准号:
    2410778
  • 财政年份:
    2024
  • 资助金额:
    $ 60.61万
  • 项目类别:
    Standard Grant
Engineering host-pathogen interactions to understand influenza A infection
工程宿主-病原体相互作用以了解甲型流感感染
  • 批准号:
    2129624
  • 财政年份:
    2022
  • 资助金额:
    $ 60.61万
  • 项目类别:
    Standard Grant

相似国自然基金

工程化细胞外囊泡减轻海马神经干细胞衰老治疗血管性认知障碍的作用及机制研究
  • 批准号:
    82301553
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
肠道菌群细胞外囊泡通过抑制MAIT细胞介导神经元铁死亡在慢性神经病理性疼痛伴发认知障碍中的机制研究
  • 批准号:
    82301371
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于小胶质细胞外泌体miR-137调控细胞焦亡探讨电针治疗卒中后认知障碍的机制
  • 批准号:
    82360969
  • 批准年份:
    2023
  • 资助金额:
    34 万元
  • 项目类别:
    地区科学基金项目
嗅黏膜间充质干细胞胞外囊泡通过减轻多细胞器功能障碍抑制脑出血NLRP3炎症小体活化的机制研究
  • 批准号:
    82301660
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
T2DM前期胰岛β细胞释放的外泌体促进胰岛素抵抗和β细胞功能障碍的作用和机制研究
  • 批准号:
    82330027
  • 批准年份:
    2023
  • 资助金额:
    220 万元
  • 项目类别:
    重点项目

相似海外基金

Injury of blood brain and alveolar-endothelial barriers caused by alcohol and electronic cigarettes via purinergic receptor signaling
酒精和电子烟通过嘌呤受体信号传导引起血脑和肺泡内皮屏障损伤
  • 批准号:
    10638221
  • 财政年份:
    2023
  • 资助金额:
    $ 60.61万
  • 项目类别:
Probing nano/bio interactions to understand and overcome biological barriers limiting nanomedicine
探索纳米/生物相互作用,以了解和克服限制纳米医学的生物障碍
  • 批准号:
    10623828
  • 财政年份:
    2023
  • 资助金额:
    $ 60.61万
  • 项目类别:
Development of therapeutic strategies to overcome fibrotic barriers to nanomedicine in pancreatic cancer via targeting of extracellular matrix signaling
通过靶向细胞外基质信号传导克服胰腺癌纳米药物的纤维化障碍的治疗策略的开发
  • 批准号:
    23K06279
  • 财政年份:
    2023
  • 资助金额:
    $ 60.61万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Overcoming barriers to effective cancer immunotherapy with an engineered virus based therapeutic
使用基于工程病毒的治疗方法克服有效癌症免疫治疗的障碍
  • 批准号:
    495807
  • 财政年份:
    2023
  • 资助金额:
    $ 60.61万
  • 项目类别:
    Operating Grants
Overcoming barriers to effective cancer immunotherapy with an engineered virus based therapeutic
使用基于工程病毒的治疗方法克服有效癌症免疫治疗的障碍
  • 批准号:
    487139
  • 财政年份:
    2023
  • 资助金额:
    $ 60.61万
  • 项目类别:
    Operating Grants
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了