CAREER: Coupling Climate and Human Health Models to Build Pathways to Extreme Heat Resilience
职业:将气候和人类健康模型结合起来,建立极端耐热能力的途径
基本信息
- 批准号:2045663
- 负责人:
- 金额:$ 63.13万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-07-01 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Extreme heat is invisible, silent, and deadly, and negatively affects human health and productivity globally. Understanding how people are affected by extreme heat, and how best to cope, is important for societal well-being and economic security. New approaches to adapt to heat are urgently needed as cities grow and temperatures rise. Existing models of present and future heat-health impacts focus on survivability and over-simplify how people respond both physiologically and behaviorally to heat across indoor and outdoor spaces. But survivable does not equal livable––addressing human complexities is needed to fully understand the exposure pathways that cause heat to become a health hazard. The goal of this Faculty Early Career Development (CAREER) grant is to advance our scientific understanding of the range of current and future impacts of extreme heat on human health across different climate types and indoor and outdoor environments. Models of human heat balance, regional climate at multiple scales, and building interior heat exposure will be combined with human vulnerability and adaptive capacity to estimate present and future heat-health risks across U.S. cities. This research bridges climate and health research disciplines to support experiential learning and public health guidance to proactively mitigate risk. The outcomes of this research align with NSF’s mission to advance national health, prosperity, and welfare. Given the diverse social, environmental, economic, and health impacts of heat, society will broadly benefit through reduced heat-related illness, death, and hospitalizations, decreased energy costs, and improved well-being, productivity, and community resilience. To create insight into current and future heat exposures, vulnerabilities, and impacts, this project leverages research across disciplines to 1) quantify differences in heat stress and strain across climate types and built/natural environmental contexts in large U.S. cities, comparing validated human heat balance (HHB) models to simple bioclimate heat metrics; 2) integrate critical physiological and behavioral adaptations into heat-health estimates to account for the range of heat stress and strain responses; and 3) quantify future livability and survivability using HHB models and dynamically downscaled climate models within and across the U.S. These objectives acknowledge that an individual’s path from experiencing hot weather to heat stress, heat strain, and adverse health outcomes is indirect, multidimensional, and non-linear. Three integrated education objectives will (a) create, evaluate, and share novel experiential learning and outreach methods using a new heat chamber in the PI’s lab; (b) co-produce and disseminate practical heat-health guidance with public health collaborators; (c) support and inspire a diverse student population to explore interdisciplinary approaches in STEM. The coupling of human health models with weather and climate data will drive transformative thinking in climate adaptation and heat resilience research, introducing the notion that survivable does not equal livable. Key scientific contributions include a new modeling approach to better understand the range of human responses to heat; a novel assessment of the interactions between climate type, indoor and outdoor environmental contexts, human behavior, and physiology on human tolerance to oppressive heat; and a creative application of physiological advances that validate the use of sustainable, low-cost (i.e., no air conditioning) personal-level cooling strategies and their efficacy in current and projected U.S. climates. This project also advances discovery and promotes experiential and inclusive cross-disciplinary training, learning, and communication for students across education levels. Co-production efforts with public health officials, practitioners, and community members will directly support societal health. Such efforts will further build community-scale heat resilience and ensure that diverse populations benefit from location and person- and context-specific information for safe and sustainable personal cooling methods, heat coping strategies, and effective messaging, outreach, and engagement.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
极端热量是看不见的,无声的,致命的,并且对全球人类健康和生产力产生负面影响。了解人们如何受到极端热量的影响,以及如何最好地应对,对社会福祉和经济安全至关重要。随着城市的增长和温度升高,迫切需要新的适应热量的方法。现有的当前和未来热健康的模型会影响生存,并过度简化人们在生理和行为上如何对室内和室外空间进行热量的反应。但是可生存的不相等 - 需要宜居的人类复杂性,以充分了解导致热量成为健康危害的暴露途径。这种教师早期职业发展(职业)的目的是促进我们对极端热量对当前和未来对人类对人类健康的当前和未来影响的范围以及室内和室外环境的范围的范围。人类热量平衡,多个尺度的区域气候以及建筑室内热暴露的模型将与人类脆弱性和适应性能力相结合,以估计美国城市的当前和未来的热健康风险。这项研究桥接了气候和健康研究学科,以支持专家学习和公共卫生指导,以主动减轻风险。这项研究的结果符合NSF的使命,即提高国家健康,繁荣和福利。鉴于热量的潜水员社会,环境,经济和健康的影响,社会将通过减少与热有关的疾病,死亡和住院,改善能源成本以及改善福祉,生产力和社区韧性来广泛受益。为了深入了解当前和未来的热地暴露,脆弱性和影响,该项目利用跨学科的研究来实现1)量化美国大城市中的气压和跨气体/自然环境环境的热应激和应变差异,将经过验证的人类热量平衡(HHB)模型比较简单的生物气候热量; 2)将关键的生理和行为适应整合到热健康估计中,以解释热应激和应变反应的范围; 3)使用HHB模型来量化未来的宜居性和存活率,并在美国内外动态降低的攀岩模型,这些物体承认,从经历炎热天气到热应激,热应变和不良健康结果的个人路径是间接,多维和非内在性。三个综合教育目标将(a)使用PI实验室中的新热室创建,评估和分享新颖的专家学习和外展方法; (b)与公共卫生合作者共同生产并传播实用的热健康指导; (c)支持并激发潜水员的学生群体探索STEM中的跨学科方法。人类健康模型与天气和气候数据的耦合将推动气候适应和热弹性研究中的变革性思维,从而引入了以下观点,即可生存的人无法宜居。关键的科学贡献包括一种新的建模方法,以更好地了解人类对热量的反应范围;对气候类型,室内和室外环境环境,人类行为以及人类对压迫性热量的耐受性的相互作用的新颖评估;以及生理进步的创造性应用,以验证使用可持续,低成本(即没有空调)的个人水平冷却策略及其在当前和预计的美国气候中的效率。该项目还可以为跨教育水平的学生提供发现和促进经验和包容性的跨学科培训,学习和沟通。与公共卫生官员,从业人员和社区成员的共同制作工作将直接支持社会健康。这样的努力将进一步建立社区尺度的热弹性,并确保各种人群从位置以及特定于个人和上下文的信息中受益,以提供安全可持续的个人冷却方法,热量应对策略以及有效的消息传递,外向和参与。该奖项反映了NSF的法规使命,并认为通过基金会的知识率和广泛的范围来评估,并被认为是值得通过评估来进行评估的。
项目成果
期刊论文数量(2)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Integrated Assessment of Urban Overheating Impacts on Human Life
- DOI:10.1029/2022ef002682
- 发表时间:2021-11
- 期刊:
- 影响因子:0
- 作者:Negin Nazarian;S. Krayenhoff;B. Bechtel;D. Hondula;R. Paolini;J. Vanos;T. Cheung;Wtl Chow;R. de Dear;Ollie Jay;Jason KW Lee;A. Martilli;Ariane Middel;L. Norford;Mahsan Sadeghi;M. Santamouris;S. Schiavon
- 通讯作者:Negin Nazarian;S. Krayenhoff;B. Bechtel;D. Hondula;R. Paolini;J. Vanos;T. Cheung;Wtl Chow;R. de Dear;Ollie Jay;Jason KW Lee;A. Martilli;Ariane Middel;L. Norford;Mahsan Sadeghi;M. Santamouris;S. Schiavon
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jennifer Vanos其他文献
Jennifer Vanos的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jennifer Vanos', 18)}}的其他基金
Global Centers Track 2: Heat Adaptation
全球中心轨道 2:热适应
- 批准号:
2330587 - 财政年份:2024
- 资助金额:
$ 63.13万 - 项目类别:
Standard Grant
相似国自然基金
中国东部森林优势木本植物叶片碳水热耦合机制及其气候适应性
- 批准号:32371575
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
气候和土地利用变化对京津冀生态系统碳水耦合循环影响的量化辨识和韧性优化
- 批准号:42305206
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
龙门山区下泥盆统高频风暴事件成因机制及其与温室气候的耦合关系
- 批准号:42372142
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
极地浮游植物—冰藻耦合系统的气候反馈效应
- 批准号:42376233
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
青海乌兰中新世野火活动与气候植被的耦合演化
- 批准号:42372002
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
相似海外基金
CAREER: Land-Atmosphere Coupling and Feedback in the Context of Climate Change
职业:气候变化背景下的陆地-大气耦合和反馈
- 批准号:
2239877 - 财政年份:2023
- 资助金额:
$ 63.13万 - 项目类别:
Continuing Grant
CAREER: CAS-Climate: Structure-Property-Performance Relationships of Iron- and Copper-Based Hybrid Mie-Resonator Photocatalysts for C-C and C-N Coupling Reactions
职业:CAS-气候:用于 C-C 和 C-N 偶联反应的铁基和铜基混合米氏谐振器光催化剂的结构-性能-性能关系
- 批准号:
2237454 - 财政年份:2023
- 资助金额:
$ 63.13万 - 项目类别:
Continuing Grant
CAREER: Advancing a macrosystems framework for climate-phenology coupling through integrated research and education
职业:通过综合研究和教育推进气候物候耦合的宏观系统框架
- 批准号:
2306198 - 财政年份:2022
- 资助金额:
$ 63.13万 - 项目类别:
Continuing Grant
CAREER: Advancing a macrosystems framework for climate-phenology coupling through integrated research and education
职业:通过综合研究和教育推进气候物候耦合的宏观系统框架
- 批准号:
2045309 - 财政年份:2021
- 资助金额:
$ 63.13万 - 项目类别:
Continuing Grant
Effect of Ag-specific CD8+ T cell deletion on diabetogenesis in the NOD mouse
Ag 特异性 CD8 T 细胞缺失对 NOD 小鼠糖尿病发生的影响
- 批准号:
7813865 - 财政年份:2008
- 资助金额:
$ 63.13万 - 项目类别: