CAREER: Multimodal Approach for Label-free Imaging of Lipidomic Changes in Brain

职业:大脑脂质组变化的无标记成像多模态方法

基本信息

  • 批准号:
    2045640
  • 负责人:
  • 金额:
    $ 50万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Continuing Grant
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-06-01 至 2026-11-30
  • 项目状态:
    未结题

项目摘要

The objective of this CAREER project is to develop a method to image lipids (fatty acids) in brain cells and tissues. This capability is needed because lipids contribute to nerve generation and impulse conduction, and they are essential signaling molecules and sources of energy. The method will be demonstrated on neuronal cell and tissue samples relevant to Alzheimer’s Disease (AD). Current diagnosis methods of AD are either invasive, expensive, low-resolution, low-sensitivity, or subjective and are not capable of probing complex molecular actions down to the level needed to study neurodegenerative diseases. These limitations will be addressed by combining two existing microscopy techniques that enable precision measurements at depths not possible with current techniques. The development of the proposed technology will advance our understanding of the pathology of AD and could lead to early detection as well as better therapeutics for AD. The research objectives of the CAREER project are integrated with educational objectives to engage middle school and high school students by partnering through a local museum. Further, the project will involve students from local community colleges, minority, and underrepresented groups on brain research.The long-term goal of the Investigator is to develop a Second Harmonic Generation (SHG) and Raman-based micro-endoscopy probe system along with statistical analysis software to perform minimally invasive imaging of lipids and metabolites in vivo at sub-millisecond time resolution. Towards this goal, the focus of this CAREER project is on pioneering a multimodal label-free approach to elucidate the spatial distribution of lipids in brain cells and tissues that will enable probing of complex molecular actions down to the synaptic level (nanoscale). Once developed, the 3D imaging platform will be used to assess the dynamics of proteins and lipids along the neuronal membrane in a mouse model of Alzheimer's Disease (AD), which could lead to improved understanding of AD pathogenesis. The Research Plan is organized under three objectives: (1) Develop a state-of-the-art nonlinear microscope system and establish a polarization activated rapid (PAR) switching of second harmonic generation (SHG) / PAR-SHG method with localize molecules with 20 nm accuracy, depth 1mm; (2) Utilize time-resolved high resolution SHG to image the adsorption and transport of molecules across the membrane of a single cell and to implement a novel optical biomarker identification method to perform quantitative metabolic profiling of neuronal cells; and (3) Combine high resolution SHG with Raman microscopy to perform lipidomic imaging of in vitro and in vivo samples from an AD mouse model. In the long term, the transformative approach will be able to perform super resolution in vivo imaging of living brain to study sub-cellular processes at molecular resolution..This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
该职业项目的目的是开发一种在脑细胞和组织中成像脂质(脂肪酸)的方法。之所以需要这种能力,是因为脂质有助于神经产生和冲动传导,并且它们是必不可少的信号分子和能量来源。该方法将在与阿尔茨海默氏病(AD)有关的神经元细胞和组织样本上进行证明。当前的AD诊断方法是侵入性,昂贵,低分辨率,低敏或主观的诊断方法,并且无法将复杂的分子作用探测到研究神经退行性疾病所需的水平。这些局限性将通过结合两种现有的显微镜技术来解决,这些微观技术可以通过当前技术在深度下进行精确测量。拟议技术的发展将提高我们对AD病理的理解,并可能导致早期发现以及更好的AD治疗疗法。职业项目的研究目标与教育对象集成在一起,通过当地博物馆合作,以吸引中学和高中生。此外,该项目将涉及来自当地社区学院,少数群体和脑研究的人数不足的群体的学生。研究者的长期目标是开发第二次谐波生成(SHG)和基于拉曼的微观镜检查探针系统以及统计分析软件,以便执行脂质和代谢物在submillisecond dissution invivo invivo invivo in vivo insudosolution insudosolution insudeSoution in vivo invivo in vivo insude insolution insude insolution in vivo insolution。为了实现这一目标,该职业项目的重点是开创一种无多模式标签的方法,以阐明脑细胞和组织中脂质的空间分布,这将使能够探测出复杂的分子作用,直至突触水平(Nanoscale)。一旦开发,将使用3D成像平台在阿尔茨海默氏病小鼠模型(AD)中评估沿神经元膜的蛋白质和脂质的动力学,这可能会改善对AD发病机理的了解。该研究计划是在三个目标下组织的:(1)开发最先进的非线性显微镜系统,并建立具有20 nm精度的本地化分子的第二次谐波生成(SHG) / PAR-SHG方法的极化快速(SHG) / PAR-SHG方法,深度为1mm; (2)利用时间分辨的高分辨率SHG对单个细胞的整个膜的增加和转运进行成像,并实施一种新型的光学生物标志物鉴定方法,以执行神经元细胞的定量代谢分析; (3)将高分辨率SHG与拉曼显微镜相结合,从AD小鼠模型中对体外和体内样品进行脂质组成像。从长远来看,变革性方法将能够在活体大脑的体内成像中执行超级分辨率,以在分子分辨率下研究亚细胞过程。该奖项反映了NSF的法定任务,并被认为是通过基金会的智力优点和更广泛影响的审查标准通过评估来评估的。

项目成果

期刊论文数量(11)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Nucleotide‐Driven Molecular Sensing of Monkeypox Virus Through Hierarchical Self‐Assembly of 2D Hafnium Disulfide Nanoplatelets and Gold Nanospheres
  • DOI:
    10.1002/adfm.202212569
  • 发表时间:
    2023-02
  • 期刊:
  • 影响因子:
    19
  • 作者:
    Panchali Moitra;Maria Iftesum;David Skrodzki;Priyanka Paul;Elnaz Sheikh;Jennifer L. Gray;K. Dighe;Zach Sheffield;M. Gartia;D. Pan
  • 通讯作者:
    Panchali Moitra;Maria Iftesum;David Skrodzki;Priyanka Paul;Elnaz Sheikh;Jennifer L. Gray;K. Dighe;Zach Sheffield;M. Gartia;D. Pan
Thermal, Physical, and Optical Properties of the Solution and Melt Synthesized Single Crystal CsPbBr3 Halide Perovskite
  • DOI:
    10.3390/chemosensors10090369
  • 发表时间:
    2022-09
  • 期刊:
  • 影响因子:
    4.2
  • 作者:
    Kirti Agrawal;S. M. Hasan;J. Blawat;Nishir Mehta;Yuming Wang;R. Cueto;M. Siebenbuerger;O. Kizilkaya-O
  • 通讯作者:
    Kirti Agrawal;S. M. Hasan;J. Blawat;Nishir Mehta;Yuming Wang;R. Cueto;M. Siebenbuerger;O. Kizilkaya-O
共 2 条
  • 1
前往

相似国自然基金

面向多中心脑影像的脑功能异常模式鉴别分析方法研究
  • 批准号:
    62306327
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
水陆跨域无人系统多模式矢量推进机构综合与切换控制方法研究
  • 批准号:
    52375015
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
风力发电用多相永磁电机系统多工作模式下低复杂度故障诊断方法研究
  • 批准号:
    52377034
  • 批准年份:
    2023
  • 资助金额:
    50.00 万元
  • 项目类别:
    面上项目
轮足人形机器人多模式运动规划与控制方法研究
  • 批准号:
    62373217
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
GaN器件多模式无阻尼高频振荡特性分析与抑制方法
  • 批准号:
    52307224
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Risk stratifying indeterminate pulmonary nodules with jointly learned features from longitudinal radiologic and clinical big data
利用纵向放射学和临床大数据共同学习的特征对不确定的肺结节进行风险分层
  • 批准号:
    10678264
    10678264
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
    $ 50万
  • 项目类别:
Scripps Clinical and Translational Science Hub
斯克里普斯临床和转化科学中心
  • 批准号:
    10621679
    10621679
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
    $ 50万
  • 项目类别:
Neural Basis of Math and Aphasia
数学和失语症的神经基础
  • 批准号:
    10606120
    10606120
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
    $ 50万
  • 项目类别:
A New Multimodal Molecular Imaging Approach to Guide Intra-Operative Tumor Resection and Post-Operative Treatment Planning
一种新的多模态分子成像方法来指导术中肿瘤切除和术后治疗计划
  • 批准号:
    10578468
    10578468
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
    $ 50万
  • 项目类别:
Spatiotemporal Dynamics of Language Processing in School-Age Children with Mild-to-Severe Hearing Loss
轻度至重度听力损失学龄儿童语言处理的时空动态
  • 批准号:
    10652918
    10652918
  • 财政年份:
    2023
  • 资助金额:
    $ 50万
    $ 50万
  • 项目类别: