EAGER: Developing AI Literacy Interventions to Teach Fundamental Concepts in AI

EAGER:开发人工智能素养干预措施来教授人工智能的基本概念

基本信息

  • 批准号:
    2022502
  • 负责人:
  • 金额:
    $ 30万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
    Standard Grant
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-03-01 至 2021-02-28
  • 项目状态:
    已结题

项目摘要

Artificial Intelligence (AI) has emerged as a foundational technology that impacts on every sector of the economy and every corner of society. AI’s rapid expansion across fields and industries and its dramatic impact on the economy and national security necessitate developing a workforce knowledgeable and capable of working with AI. There is an urgent need to research K-12 students’ capacity to learn AI concepts and processes and how best to support their development of AI skills and career interests. Meanwhile, broadening participation in AI is an important need in AI workforce development. Engaging students from underrepresented groups in AI education can help ensure that the design, development, and utilization of AI technologies are inclusive and equitable. The objective of this project is to build field-advancing knowledge about 1) appropriate measurements and instruments to assess middle school students’ concept knowledge, awareness of AI and perceptions about AI, and career orientation; and 2) whether and how students are able to learn key AI concepts and become more interested in AI and related careers. This knowledge will be generated through investigating the learning outcomes and efficacy of an AI curriculum in informal learning contexts with students from diverse backgrounds, including Hispanic/Latinx and African American learners. The project specifically addresses middle school students (ages 11-13) because the middle school years are a critical time for students to begin exploring careers related to their interests. In order to develop a diverse AI workforce, it is important to expose students to the wide range of applicability of AI and the career options it confers. Many of the AI learning activities produced through the project are not dependent on the availability of computers, contributing to multiple pathways for broadening access to and engagement in AI learning experiences for underserved students who do not have consistent access to Internet services . This project is funded by the Innovative Technology Experiences for Students and Teachers (ITEST) program, which supports projects that build understandings of practices, program elements, contexts and processes contributing to increasing students' knowledge and interest in science, technology, engineering, and mathematics (STEM) and information and communication technology (ICT) careers.Researchers will focus on four research questions: 1) What are students’ perceptions and attitudes towards AI and how do they change, if at all, as a result of the interventions? 2) What knowledge and skills do students develop through the interventions? 3) What kinds of interactions between youth and curriculum materials, tools, and peers facilitate students’ conceptual development? and 4) What connections do students make, if any, between the skills they learn and application of those skills in various STEM and computer science careers and fields? The project team will use a design based research approach in conducting expert reviews, focus groups, and a pilot test to iteratively test and refine the curriculum, measures, and assessments. The team will then conduct an efficacy study to collect and analyze data to generate estimates of the impact of the intervention on youths’ perceptions of and attitudes toward AI, learning of concepts in AI, and career adaptability. Additionally, video and interaction analyses, cognitive interviews, and case studies with thematic analyses will be used to gain an understanding of student engagement with the AI activities; student interactions that facilitated learning such as interactions between students and curriculum materials, students and tools, and students and their peers; and the best strategies to support them to pursue AI related careers. The project’s deliverables include: the Developing AI LIteracy (DAILy) curriculum; the Attitudes Toward AI, AI Concept Inventory and AI Career Futures surveys; and the research findings. The project’s outcomes will build the knowledge base on appropriate measurements and instruments, students’ learning processes, how and to what extent students can learn AI concepts in middle school, and the efficacy of the intervention with an audience of underrepresented youth. The research has potential to advance the field of AI education by contributing to the definition of AI literacy, forming the basis for subsequent research on learning trajectories in K-12 AI education, and generating understandings that are foundational to developing education programs that will prepare a workforce knowledgeable and capable of working with AI.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
人工智能(AI)已成为影响经济各个部门和社会各个角落的基础技术,人工智能在各个领域和行业的快速扩张及其对经济和国家安全的巨大影响,需要培养一支知识渊博、能力强的劳动力队伍。迫切需要研究 K-12 学生学习人工智能概念和流程的能力,以及如何最好地支持他们的人工智能技能和职业兴趣的发展,同时,扩大对人工智能的参与是人工智能劳动力的重要需求。吸引学生的发展。人工智能教育中代表性不足的群体可以帮助确保人工智能技术的设计、开发和利用具有包容性和公平性。该项目的目标是建立有关以下方面的领域先进知识:1)评估中学生的适当测量和工具。概念知识、对人工智能的认识和对人工智能的看法以及职业方向;2) 学生是否以及如何能够学习关键的人工智能概念并对人工智能和相关职业变得更感兴趣。人工智能课程在非正式学习环境中的有效性该项目专门针对中学生(11-13 岁),因为中学时期是学生开始探索与其兴趣相关的职业的关键时期。培养多元化的人工智能劳动力,让学生接触人工智能的广泛适用性及其赋予的职业选择非常重要,通过该项目产生的许多人工智能学习活动不依赖于计算机的可用性,从而有助于实现人工智能的发展。扩大人工智能的获取和参与的多种途径为无法持续访问互联网服务的服务不足的学生提供学习体验 该项目由学生和教师创新技术体验 (ITEST) 计划资助,该计划支持有助于加深对实践、计划要素、背景和流程的理解的项目。增加学生对科学、技术、工程和数学(STEM)以及信息和通信技术(ICT)职业的知识和兴趣。研究人员将重点关注四个研究问题:1)学生对人工智能的看法和态度是什么,以及如何看待这些问题。他们会改变,如果在2) 学生通过干预获得了哪些知识和技能? 3) 青少年与课程材料、工具和同伴之间的哪些互动促进了学生的概念发展?项目团队将使用基于设计的研究方法来迭代进行专家评审、焦点小组和试点测试测试和完善课程、措施和评估。然后,该团队将进行有效性研究,收集和分析数据,以估计干预措施对年轻人对人工智能的看法和态度、人工智能概念的学习、职业适应性的影响,以及主题分析的案例研究。将用于了解学生与人工智能活动的互动,以促进学习,例如学生与课程材料、学生与工具以及学生与同伴之间的互动,以及支持他们追求的最佳策略;人工智能相关的职业。可交付成果包括:发展人工智能素养(DAILy)课程;对人工智能的态度、人工智能概念清单和人工智能职业未来调查;以及该项目的成果将建立基于适当的测量和工具、学生的学习过程的知识库。学生如何以及在多大程度上可以在中学学习人工智能概念,以及对代表性不足的年轻人进行干预的效果。该研究有可能通过促进人工智能素养的定义、形成人工智能教育领域的发展。为后续 K-12 人工智能教育学习轨迹研究奠定基础,并形成理解,这些理解是开发教育计划的基础,这些计划将培养知识渊博且能够使用人工智能的劳动力。该奖项反映了 NSF 的法定使命,并被认为是值得的通过使用基金会的智力优势和更广泛的影响审查标准进行评估来提供支持。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Developing Middle School Students' AI Literacy
培养中学生人工智能素养
Adapting K-12 AI Learning for Online Instruction. 2nd International Workshop on Education in Artificial Intelligence K-12
将 K-12 人工智能学习应用于在线教学。
The Contour to Classification Game
分类游戏的轮廓
What are GANs?: Introducing Generative Adversarial Networks to Middle School Students
什么是 GAN?:向中学生介绍生成对抗网络
  • DOI:
    10.1609/aaai.v35i17.17821
  • 发表时间:
    2021-05-18
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Safinah Ali;Daniella DiPaola;C. Breazeal
  • 通讯作者:
    C. Breazeal
Exploring Generative Models with Middle School Students
与中学生一起探索生成模型
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Irene Lee其他文献

Complexity, Emergence and Pathophysiology: Using Non-Adaptive Inflammatory Response
复杂性、出现和病理生理学:使用非适应性炎症反应
  • DOI:
    10.1007/978-3-540-35866-4_6
  • 发表时间:
    2006
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    G. An;Irene Lee
  • 通讯作者:
    Irene Lee
Children as creators, thinkers and citizens in an AI-driven future
儿童作为人工智能驱动的未来的创造者、思想家和公民
An Effectiveness Study of Teacher-Led AI Literacy Curriculum in K-12 Classrooms
K-12 课堂中教师主导的人工智能素养课程的有效性研究
Mitochondrial ATP-Dependent Lon Protease
线粒体 ATP 依赖性 Lon 蛋白酶
  • DOI:
  • 发表时间:
    2013
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Jae Lee;Venkatesh Sundararajan;Irene Lee;C. Suzuki
  • 通讯作者:
    C. Suzuki
Towards the control of intracellular protein turnover: mitochondrial Lon protease inhibitors versus proteasome inhibitors.
控制细胞内蛋白质周转:线粒体 Lon 蛋白酶抑制剂与蛋白酶体抑制剂。
  • DOI:
    10.1016/j.biochi.2007.10.010
  • 发表时间:
    2008-02-01
  • 期刊:
  • 影响因子:
    3.9
  • 作者:
    A. Bayot;N. Basse;Irene Lee;M. Gareil;B. Pirotte;A. Bulteau;B. Friguet;M. Reboud
  • 通讯作者:
    M. Reboud

Irene Lee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Irene Lee', 18)}}的其他基金

Mechanism for the selection of undamaged physiological substrates by the ATP-dependent protease Lon
ATP依赖性蛋白酶Lon选择未受损生理底物的机制
  • 批准号:
    2210869
  • 财政年份:
    2022
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Everyday AI for Youth: Investigating Middle School Teacher Education, Classroom Implementation, and the Associated Student Learning Outcomes of an Innovative AI Curriculum
青少年的日常人工智能:调查中学教师教育、课堂实施以及创新人工智能课程的相关学生学习成果
  • 批准号:
    2048746
  • 财政年份:
    2021
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Making Sense of Models: Investigating Mechanistic Reasoning as a Bridge for Connecting 6th Grade Mathematics and Science Learning
理解模型:研究机械推理作为连接六年级数学和科学学习的桥梁
  • 批准号:
    1934126
  • 财政年份:
    2020
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Activity Probes to Monitor ATP-Dependent Proteolysis
用于监测 ATP 依赖性蛋白水解作用的活性探针
  • 批准号:
    1507792
  • 财政年份:
    2015
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Chemical Biology of Energy-Dependent Proteolysis in Mitochondria
线粒体能量依赖性蛋白水解的化学生物学
  • 批准号:
    1213175
  • 财政年份:
    2012
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Strategies: GUTS y Girls
策略:胆量与女孩
  • 批准号:
    1031421
  • 财政年份:
    2010
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Mechanism of ATP-Dependent Proteolysis by Lon Protease
Lon 蛋白酶的 ATP 依赖性蛋白水解机制
  • 批准号:
    0919631
  • 财政年份:
    2009
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
NSFAYS Project GUTS: Growing Up Thinking Scientifically
NSFAYS 项目 GUTS:科学思考成长
  • 批准号:
    0639637
  • 财政年份:
    2007
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant

相似国自然基金

人工智能技术加剧全球价值链非平衡发展的形成机理与中国对策研究
  • 批准号:
    72303127
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
复杂情境下企业与人工智能共演成长特征及其理论发展
  • 批准号:
    72332009
  • 批准年份:
    2023
  • 资助金额:
    166 万元
  • 项目类别:
    重点项目
融合量子力学和人工智能技术发展高精度共价药物CADD工具Cov_DOX
  • 批准号:
    22373039
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
战略与管理研究类:材料人工智能发展战略调研
  • 批准号:
    52342303
  • 批准年份:
    2023
  • 资助金额:
    10 万元
  • 项目类别:
    专项基金项目
复杂壁湍流相干结构时空发展演化机理与人工智能高效复合减阻策略的实验研究
  • 批准号:
    12332017
  • 批准年份:
    2023
  • 资助金额:
    239 万元
  • 项目类别:
    重点项目

相似海外基金

Developing the Blue-Collar AI Workforce
发展蓝领人工智能劳动力
  • 批准号:
    2400875
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Standard Grant
Developing AI to bridge lab and field plant research
开发人工智能以连接实验室和野外植物研究
  • 批准号:
    BB/Y513969/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
Accelerating Trustworthy AI: developing a first-to-market AI System Risk Management Platform for Insurance Product creation
加速可信人工智能:开发首个上市的人工智能系统风险管理平台,用于保险产品创建
  • 批准号:
    10093285
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Collaborative R&D
CAREER: An Artificial Intelligence (AI)-enabled Analytics Perspective for Developing Proactive Cyber Threat Intelligence
职业:基于人工智能 (AI) 的分析视角,用于开发主动网络威胁情报
  • 批准号:
    2338479
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Continuing Grant
Developing a new generation of tools for predicting novel AMR mutation profiles using generative AI
使用生成人工智能开发新一代工具来预测新型 AMR 突变谱
  • 批准号:
    BB/Z514305/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了