Developing AI to bridge lab and field plant research
开发人工智能以连接实验室和野外植物研究
基本信息
- 批准号:BB/Y513969/1
- 负责人:
- 金额:$ 32.31万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2024
- 资助国家:英国
- 起止时间:2024 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The imminent challenges of climate change, growing food demand, and fertiliser shortage have brought enormous threats to global food security. As one of the most consumed grains in the world, wheat (Triticum aestivum L.) and its sustainable production are paramount to ensure food supply. The early parts of wheat developmental phase, i.e. germination (growth stage, GS 00-09) and seedling development (GS 10-19), are critical as a poor-quality establishment in the field can translate into: (1) a reduced plant density and thus a lower yield production, or (2) decreased competitiveness of crops against weeds and the development of diseases. In fact, better seed quality and vigour often lead to improved crop performance and health, ensuring crop sustainability under complex field conditions. Due to the importance of germination and seedling, the foundation phase in wheat underpins modern breeding, cultivation, agronomy, and even smart agricultural activities. Still, some lab-based research discoveries in seed vigour could vanish when they were moved to the field, which might be caused by genetics, environmental factors, agronomic management, and other in-field matters. AI-powered solutions could help the selection of the most predictive features from lab-based seed quality and vigour characteristics through a range of supervised or unsupervised algorithms, followed by the connection between lab-based features with in-field seedling performance. The above presents opportunities that AI could help bridge the gap between lab-based and field-based plant research: To identify spectral signatures (i.e. reflectance measured using single or multiple wavelengths to signify internal components of seeds) from multispectral seed imaging to assess seed quality. To establish AI-powered tracking methods to quantify radicle emergence and seedling establishment to quantify and classify seed vigour. To build a feature selection approach to select the most relevant features identified through lab-based experiments to predict and verify seedling development under field conditions. Both NIAB UK (led by Prof Ji Zhou) and Université d'Angers (University of Angers France, same below; led by Prof David Rousseau) have been developing AI solutions in areas such as multi-spectral seed imaging to assess seed quality, seed germination tests for seed vigour assessment, and drone-based phenotyping to study crop early establishment. This "Partner with international researchers on AI for Bioscience" call will provide a unique opportunity for both sides to work together, learning from counterpart's AI solutions, jointly optimising the existing toolkits, and more importantly, seeking and developing AI-powered solutions to connect lab-based seed quality and vigour assessment with in-field seedling establishment using wheat as a model plant. We trust the proposed project will be a valuable case study that demonstrates how to combine AI and domain knowledge to bridge the gap between laboratory and field-based plant research.
气候变化、不断增长的粮食需求和化肥短缺等迫在眉睫的挑战给全球粮食安全带来了巨大威胁,小麦作为世界上消耗量最大的谷物之一,其可持续生产对于保障粮食至关重要。小麦发育阶段的早期阶段,即发芽(生长阶段,GS 00-09)和幼苗发育(GS 10-19)至关重要,因为田间质量差可能会导致: (1) 植物密度降低,从而降低产量,或 (2) 作物对抗杂草和疾病的竞争力下降。事实上,更好的种子质量和活力往往会改善作物性能和健康,确保作物的可持续性。由于发芽和幼苗的重要性,小麦的基础阶段支撑着现代育种、栽培、农学甚至智能农业活动,但一些基于实验室的种子活力研究发现可能会在转移后消失。到田间的差异可能是由遗传、环境因素、农艺管理和其他田间问题引起的,可以帮助通过一系列监督或无监督的方式从基于实验室的种子质量和活力特征中选择大多数特征。算法,然后是基于实验室的特征与田间育苗性能之间的联系。 上述内容提供了人工智能可以帮助弥合基于实验室和基于田间的植物研究之间差距的机会:识别光谱特征(即使用单个测量的反射率)。或多个建立人工智能驱动的跟踪方法来量化胚根的出现和幼苗的建立,以量化和分类种子活力。通过基于实验室的实验来预测和验证田间条件下的幼苗发育,NIAB UK(由 Ji Zhou 教授领导)和 Université d'Angers(法国昂热大学,下同;由 David Rousseau 教授领导)都确定了这一点。一直在开发用于评估种子质量的多光谱种子成像、用于评估种子活力的种子发芽测试以及用于研究作物早期生长的基于无人机的表型等领域的人工智能解决方案。将为双方提供一个独特的合作机会,学习对方的人工智能解决方案,共同优化现有工具包,更重要的是,寻求和开发人工智能驱动的解决方案,将实验室种子质量和活力评估与田间联系起来我们相信,所提出的项目将是一个有价值的案例研究,展示如何将人工智能和领域知识结合起来,弥合实验室和实地植物研究之间的差距。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ji Zhou其他文献
Safety and efficacy of endovascular recanalization in patients with mild anterior stroke due to large-vessel occlusion exceeding 24 hours.
因大血管闭塞超过 24 小时而导致轻度前部卒中患者血管内再通的安全性和有效性。
- DOI:
10.1080/00207454.2023.2236781 - 发表时间:
2023-07-17 - 期刊:
- 影响因子:0
- 作者:
Canmin Zhu;Qiang Li;Wei Zeng;Ao;Ji Zhou;Mei Zhang;Yuanfeng Jiang;Xia Li;Wei - 通讯作者:
Wei
1-Gb/s multimedia service upstream transmission in real-time DSP-based OFDM-PON
基于 DSP 的 OFDM-PON 实时 1 Gb/s 多媒体服务上行传输
- DOI:
10.1109/iccchina.2013.6671112 - 发表时间:
2013-11-21 - 期刊:
- 影响因子:0
- 作者:
Yaojun Qiao;Ji Zhou;Lei Wang;Yuefeng Ji - 通讯作者:
Yuefeng Ji
Optimal mechanism design using interior-point methods
使用内点法的优化机构设计
- DOI:
10.1016/s0094-114x(99)00003-8 - 发表时间:
2000 - 期刊:
- 影响因子:5.2
- 作者:
Xiong Zhang;Ji Zhou;Y. Ye - 通讯作者:
Y. Ye
A Simplified Sea Surface Emissivity Model for Retrieving Sea Surface Temperature From Sentinel-3A SLSTR Data
用于从 Sentinel-3A SLSTR 数据中反演海面温度的简化海面发射率模型
- DOI:
10.1109/tgrs.2024.3379557 - 发表时间:
2024-09-14 - 期刊:
- 影响因子:8.2
- 作者:
Jin Ma;Ji Zhou;Tao Zhang;Jiajia Yang;Zhiyong Long;Ling Jiang;Hua Wu - 通讯作者:
Hua Wu
Analytical solution of capsizing moments in ship chamber under pitching excitation
纵摇激励下船舱倾覆力矩的解析解
- DOI:
10.1177/0954406219843327 - 发表时间:
2019-04-16 - 期刊:
- 影响因子:0
- 作者:
Yang Zhang;Duanwei Shi;Langjing Shi;R. Xia;Xionghao Cheng;Ji Zhou - 通讯作者:
Ji Zhou
Ji Zhou的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ji Zhou', 18)}}的其他基金
Novel seed-based treatment for tackling flea beetle damage to protect the UK's oilseed rape production
用于解决跳甲虫损害的新型种子处理方法,以保护英国的油菜生产
- 批准号:
BB/X011941/1 - 财政年份:2023
- 资助金额:
$ 32.31万 - 项目类别:
Research Grant
CropQuant - Next-generation cost-effective crop monitoring system for breeding, crop research and digital agriculture
CropQuant - 用于育种、作物研究和数字农业的下一代经济高效的作物监测系统
- 批准号:
BB/P028160/1 - 财政年份:2017
- 资助金额:
$ 32.31万 - 项目类别:
Research Grant
相似国自然基金
基于多模态分子影像和人工智能的结直肠癌PD-L1表达演变预测及机制研究
- 批准号:82302185
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
人工智能技术加剧全球价值链非平衡发展的形成机理与中国对策研究
- 批准号:72303127
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于计算模拟和人工智能融合策略的卡宾蛋白酶优化和设计
- 批准号:22303102
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
教育人工智能背景下课程智慧大脑构建研究
- 批准号:62367003
- 批准年份:2023
- 资助金额:29 万元
- 项目类别:地区科学基金项目
人工智能驱动的PDE4抑制剂设计及抗肺纤维化作用研究
- 批准号:82304384
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
SCC-PG: Bridge: An AI-Enabled Platform to Support Coordinated Care for Children with Autism
SCC-PG:Bridge:支持自闭症儿童协调护理的人工智能平台
- 批准号:
2306596 - 财政年份:2023
- 资助金额:
$ 32.31万 - 项目类别:
Standard Grant
I-Corps: AI-Based Decision Support for Management of Bridge Networks
I-Corps:基于人工智能的桥梁网络管理决策支持
- 批准号:
2326446 - 财政年份:2023
- 资助金额:
$ 32.31万 - 项目类别:
Standard Grant
I-Corps: AI-Based Decision Support for Management of Bridge Networks
I-Corps:基于人工智能的桥梁网络管理决策支持
- 批准号:
2326446 - 财政年份:2023
- 资助金额:
$ 32.31万 - 项目类别:
Standard Grant
SCC-PG: Bridge: An AI-Enabled Platform to Support Coordinated Care for Children with Autism
SCC-PG:Bridge:支持自闭症儿童协调护理的人工智能平台
- 批准号:
2306596 - 财政年份:2023
- 资助金额:
$ 32.31万 - 项目类别:
Standard Grant
Building BRIDGEs: Coordinating Standards, Diversity, and Ethics to Advance Biomedical AI
搭建桥梁:协调标准、多样性和道德以推进生物医学人工智能
- 批准号:
10801686 - 财政年份:2023
- 资助金额:
$ 32.31万 - 项目类别: